mLSI Design with MINT

Radhakrishna Sanka®, Joshua Lippai' and Douglas Densmore?

!Department of Electrical & Computer Engineering, Boston University, Boston, MA

{sanka, jlippai,dougd}@bu.edu

1. INTRODUCTION

Despite these many applications for microfluidics in aug-
menting the synthetic biology workflow, adoption of mi-
crofluidics as a potential experimental and test platform
has been slow in the synthetic biology community at large.
The majority of synthetic biologists lack both the exper-
tise knowledge in fluid dynamics and microfluidic design
and the expensive capital equipment for microfluidic fab-
rication. Layout of microfluidic designs by hand is both
time consuming and error prone. In addition, experiments
involving mLSI also require a complex control platform in-
cluding both software and hardware for valve control and
fluid manipulation. Such setups are frequently customized
for the application at hand and may be difficult to claim for
future reuse. Improvements in automation for microfluidic
device design and readily available open source software and
hardware for control platforms could increase the speed of
adoption of microfluidic technologies by synthetic biologists.

In [3] the authors undertook an herculean effort to design
and fabricate the MLSI device with only the aid of tools
such as AutoCAD and Solidworks most researchers who use
mircofluidics today spend a large portion of their time in
manually drawing out every physical feature that consti-
tutes the physical device. In this work we leverage MINT
[5] to easily define large designs and Fluigi to automatically
generate the physical layout of these designs and report the
updates made to the MINT specification standard and the
architectural updates made to Fluigi.

2. MINT

Previous versions of MINT [5], required the user to specify
each of the components and lay them out the connections
between each of the component. At that version, generating
grids of reaction chambers required the was a tedious task
which required the user to write scripts that could generate
MINT that would be processed for generating a physical
design. This process of defining individual components and
connections was arduous and hindered the user’s ability to
specify geometric constraints on the generated layout.

Various geometric constraints such as “GRID”, “BANK”
and “TREE” would require the relative component positions
and orientations to be fixed. The implication of statements
such as "GRID” are that it also requires the place and route
tool to process and satisfy the geometric constraints given
by the designer. In order to satisfy these constraints, an
additional stage in the process that would generate macro
cells and algorithms that will optimize the placement within
these macro cells will also be implemented.

In addition to being able to add geometric constraints.
The updates to the Fluigi and MINT architecture now ab-
stract the layers for manufacturing and the component con-
nectivity, hence the layers can be defined as either “FLOW?”,
“CONTROL”, “INTEGRATION” without any worry about
how many feature depths are present in the device. The
components in the “FLOW?” layer include everything that
make the device functional. The components in the “CON-
TROL” layer are typically control the components in the
“FLOW?” layer. Finally the components in the “INTEGRA-
TION?” layer will include all the components that will require
external integrations and imply hard constraints onto place-
ment algorithms to ensure that external integrations are not
blocked by other features. This redesigned architecture can
accommodate multiple fabrication protocols for the devices.

3. FLUIGI

Fluigi is the Place and Route tool that is used for auto-
matically generating the physical layout of the microfluidic
chip. Figure 1 show a high level description of the various
stages where a MINT description of the device is converted
into a physical device. The gray box consists of a parser that
was generated using ANTLR [4], the purple box consists of
the bulk of algorithms that will generate the physical design,
the red box consists of a routines that check if the generated
design is valid or not and finally the orange box consist of
plug-ins that will generate the design outputs.

The new extensions to MINT will require changes to how
the device is modeled in Fluigi. The updated process is de-
scribed in Algorithm 2. In order to accommodate the new
constraints that will be introduced in this work, the Mi-
crofluidic Device model as described in [2] will be completely
restructured.

4. CONCLUSION

Physical design automation remains to be an actively re-
searched problem [1] in the microfluidics space but the con-
trol of these MLSI devices remains yet to be integrated with
the physical design automation flow. Using the current vir-
tual microfluidic device model Fluigi[2] currently generates
control sequences for a single architecture of microfluidic de-
vices. The ability to group components and the facility to
export the device to to a standard format will further allow
the device descriptions to be imported into future tools that
generate control sequences for arbitrary biology protocols in
addition to designing large scale microfluidic designs.

MINT

T 1
T e
0 i
i

Generate the Device

Model

Run Place and Route

v

Run Design Rule

Check

Generate Output

Y
Design Files
Figure 1: Fluigi Flow - This diagram describes the various

stages of the Fluigi Place and Route tool that generates the
design files that will be sent for manufacturing.

Require: N := MINT Description
Ensure: N is a valid description
D := generate_device(N)
Require:
LB := ({FLOW,CONTROL,INTEGRATIOM} in D
for all LB do
;G :=extract_groups(FLOW)
C := generate_placement_cells(D, G)
FP := generate_flow_placements(D, C')
for Pin FP do
place_flow(P)
CP := place_control(CONTROL, P)

IP := place_integration(INTEGRATION,CP, FP)
10: end for
11: route(P,CP,FP)
12: D :=import_place(D, P,CP,1P)
13: RESULT = design_rule_check(D)
14: if RESULT then

15: generate_output()
16: else
17: redo()
18: end if
end for

Figure 2: Place and Route: The above algorithm describes
the place and route process and highlights the dependencies
between the layers within each individual LAYER BLOCK
that consists of a FLOW, CONTROL and INTEGRATION.
These dependencies determine the order in which they are
placed and routed. The bulk of the placement is determined
during the place_flow().

S. REFERENCES

[1] 1. E. Araci and P. Brisk. Recent developments in
microfluidic large scale integration. Current opinion in
biotechnology, 25:60—68, 2014.

[2] H. Huang. Fluigi: An end-to-end Software Workflow for
Microfluidic Design. PhD thesis, Boston University,
2015.

[3] J. Melin and S. R. Quake. Microfluidic Large-Scale
Integration: The Evolution of Design Rules for
Biological Automation. Annual Review of Biophysics
and Biomolecular Structure, 36(1):213-231, 2007.

[4] T. Parr and K. Fisher. LL(*): The Foundation of the
ANTLR Parser Generator. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’11, pages 425-436,
New York, NY, USA, 2011. ACM.

[5] R. Sanka, H. Huang, R. Silva, and D. Densmore. Mint -
microfluidic netlist. poster presented at IWBDA 2016,
Aug. 2016.

