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ABSTRACT 

  

DNA assembly and rational design are cornerstones of synthetic 

biology. While many DNA assembly standards have been published in 

recent years, only the Modular Cloning standard, or MoClo, has the 

advantage of publicly available part libraries for use in plant, yeast, and 

mammalian systems. No multipart modular library has previously been 

developed for use in prokaryotes. Building upon the existing MoClo 

assembly framework, we developed a collection of DNA parts and 

optimized MoClo protocols for use in E. coli. We present this assembly 

standard and library along with part characterization, design strategies, 



 

vii 
 

potential applications, and troubleshooting. Developed as part of the 

Cross-disciplinary Integration of Design Automation Research (CIDAR) 

lab collection of tools, the CIDAR MoClo Library is publicly available and 

contains promoters, ribosomal binding sites, coding sequences, 

terminators, vectors, and a set of fluorescent control plasmids. Optimized 

protocols reduce reaction time and cost by >80% from previously 

published protocols. The CIDAR MoClo Library is the first bacterial DNA 

part library compatible with a multipart assembly standard.  

To demonstrate the utility of the CIDAR MoClo system in a 

traditional biology context, we used the library and previous expression 

data to create a series of dual expression plasmids. In this manner, we 

produced a dual expression plasmid capable of expressing equimolar 

amounts of two variants of rabbit aldolase, a His-tagged wildtype protein 

and a single-amino-acid substitution mutant deficient in binding actin. 

This expression plasmid will enable the production of dimer-of-dimer 

heterotetramers needed for structural determination of the actin-aldolase 

interaction by electron microscopy. To employ CIDAR MoClo in a 

synthetic biology context, we produced a bioelectronic pH-mediated 

genetic logic gate with DNA circuits built using MoClo and integrated with 

Raspberry Pi computers, Twitter, and 3D printed components. Logic 

gates are an increasingly common biological tool with applications in 

cellular memory and biological computation. MoClo facilitates rapid 
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iteration of genetic designs, better enabling the development of cellular 

logic.  

The CIDAR MoClo Library and assembly standard enable rapid 

design-build-test cycles in E. coli making this system advantageous for 

use in many areas of synthetic biology as well as traditional biological 

research.  
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1 CHAPTER 1 INTRODUCTION 

1.1 Synthetic biology 

Synthetic biology integrates engineering, biology, chemistry, and physics in 

a multidisciplinary research approach to biological engineering (Cameron et al. 

2014, Church et al. 2014). DNA assembly and modification is a cornerstone of the 

field, with applications ranging from cellular computation and memory devices to 

metabolic engineering and production of pharmaceuticals (Ro et al. 2006, Ham et 

al. 2008, Friedland et al. 2009, Bonnet et al. 2012, Keasling 2012). Increased 

modularity in genetic design in the form of publicly available libraries of 

characterized DNA parts provide a platform for rapid expression tuning of 

biological circuits (Casini et al. 2015). Likewise, the advent of affordable table top 

manufacturing is enabling new research approaches as 3D printing and computer 

numerical control (CNC) micromilling equipment and software tools become more 

available (O'Neill et al. 2014, Guckenberger et al. 2015).  

Recent examples of computation in living cells include genetic regulatory 

networks that count (Friedland et al. 2009) and a variety of approaches to creating 

Boolean logic in living cells (Tamsir et al. 2011, Siuti et al. 2013). Using 

recombinases enzymes which are able to cut DNA and invert the sequence, 

researchers created all 16 two-input logic gates in E. coli  with a single genetic 

module per gate (Siuti et al. 2013). Other logic gates designs have been produced 
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using common signaling pathways molecules in E. coli (Tamsir et al. 2011) and 

zinc-finger transcription factors in mammalian cells (Lohmueller et al. 2012).  

Synthetic biology has reoriented metabolic engineering, providing rational 

design tools for the modulation of biosynthesis and isolation of useful compounds 

(Salis 2011, Keasling 2012). A hallmark publication, the antimalarial medication, 

Artemisinin, was produced in yeast providing an alternative source of the high-

demand drug through a partnership with the Gates Foundation (Ro et al. 2006). In 

addition to biomedical applications, metabolic engineering is also being employed 

to produce high value molecules currently produced from petroleum (Lee et al. 

2012).  

Rapid DNA assembly forms the foundation of the design-build-test 

paradigm in synthetic biology across all of these applications. Despite 

improvements in the technologies, high throughput iterative designs and 

combinatorial methods are still cost prohibitive in a synthesis-based assembly due 

to the lack of reusable parts (Czar et al. 2009, Kosuri and Church 2014). As a 

result, a variety of DNA assembly standards based off a variety of methodologies 

have arisen in the previous 15 years to meet this demand.  

Multipart DNA assembly has become a common tool in genetic engineering 

methodologies since the publication of the Gibson and Golden Gate assembly 

methods (Engler et al. 2009, Gibson et al. 2009). While complex genetic designs 

can be built with synthesis-based assembly techniques, these methods produce 
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no standardized reusable parts and require novel synthesis for every iteration of 

design. The most efficient assembly method for a given application is largely 

application dependent.  

1.2 Assembly methodologies and standards 

Commonly used assembly methods are listed in Figure 1-1, part of a survey 

performed to determine the enabling technologies in synthetic biology (Kahl and 

Endy 2013). According to this survey, synthesis based methods including Gibson 

assembly (Gibson et al. 2009) are the most commonly used assembly methods 

followed closely by BioBrick (Knight 2007), Gateway (Katzen 2007), and BglBrick 

(Anderson 2010) assembly standards. Each of these methods are described 

further in this section.  

Gibson and synthesis based methods are ideal for many applications 

including genome engineering, but remain cost prohibitive for high throughput 

cloning and combinatorial assembly. Gateway cloning was one of the earliest 

standards developed, however it is primarily designed for moving full gene units. 

BioBrick and BglBrick standards offered the first modular DNA part assembly 

systems and libraries of basic parts (i.e. promoters, coding sequences), combining 

two parts at a time in a consuming binary fashion. 
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Figure 1-1 Survey of enabling technologies: DNA assembly methods and standards. List of 
commonly used DNA assembly methods and standards as published by (Kahl and Endy 2013). 

Golden Gate and its derivatives, including Modular Cloning (MoClo), were 

the first multipart modular assembly standards available, allowing for the reliable 

assembly of up to 6 parts at a time (Engler et al. 2009, Weber et al. 2011). At the 

time this survey was taken, however, DNA part libraries were not yet widely 

available reducing the utility of these standards. In the past two years, part libraries 

have become increasingly available for eukaryotic MoClo platforms. This work 

describes the development of an E. coli MoClo assembly standard. With these part 
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libraries available, MoClo and related multipart assembly standards are rapidly 

becoming more widely used.  

DNA assembly standards can largely be broken down by the underlining 

methodology employed. In general, all assembly methods utilize one or more of 

the following tools; restriction endonucleases (RE), homing endonucleases (HE), 

Type IIS restriction endonucleases (Type IIS), or annealing overlapping ends (OE) 

(Casini et al. 2015). Assembly standards are further categorized by the ability to 

hierarchically assemble large constructs, to reuse parts with a modular design, and 

to assemble more than two parts in a single reaction. The most effective practices 

often utilize multiple assembly methods. 

1.2.1 Restriction endonucleases 

Restriction endonuclease (RE) digest and ligation techniques, traditional 

molecular biology methods, have been used to cut and paste DNA since the 1970s 

(Cohen et al. 1973). RE methods generally only join two DNA parts and are 

sensitive to illegal restriction sites, recognition sequences which may occur 

naturally within the sequence of the part and interfere with the cloning reaction. 

Complex DNA engineering with traditional cloning is an art form onto itself, 

requiring extensive planning and verification of intermediate steps.  

One of the first assembly standards developed, BioBricks (Knight 2007, 

Smolke 2009), uses standard RE methods with standard prefixes and suffixes 

each containing two restriction enzyme recognition sequences. BioBrick parts are 
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cut in a standard fashion resulting in a new part which contains the same prefix 

and suffix sequences while destroying the connecting restriction site. This allows 

for hierarchical assembly with a small number of enzymes.  

The brick-like assembly format is derived from the use of isocaudomers, 

restriction enzymes which recognize different sequences yet produce the same 

overhangs. When ligated, these overhangs produce ódeadô sites, sequences which 

are no longer recognized by either enzyme. These sites are referred to as óscarsô 

and are known to influence circuit behavior and stability (Sleight and Sauro 2013). 

BioBricks provided a foundation for standard, modular parts and gained traction as 

the method adopted by the International Genetically Engineered Machines 

competition (iGEM) (Smolke 2009).  

Though widely used, the BioBricks standard is limited by the binary nature 

of RE assembly methods. Parts are susceptible to illegal restriction sites and often 

require mutation of natural sequences for new parts. The binary nature of RE 

cloning assembly methods requires sequential step-by-step assembly increasing 

the time involved in the design-build-test cycle to produce iterative designs.  

1.2.2 Homing endonucleases 

Homing endonucleases (HE) function similarly to traditional restriction 

endonucleases but recognize longer sequences. This makes illegal sites unlikely. 

An early form of modular DNA assembly, HE methods first appeared with the 

Gateway cloning system commercialized by Invitrogen in the 1990s.  
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Gateway uses recombinases enzymes and long repetitive insertion 

sequences, att sites, to direct cloning. A concerted effort was made to create 

Gateway compatible plasmids carrying human, mouse, rat, and yeast open 

reading frames to support the research community (Gelperin et al. 2005, Nakajima 

et al. 2005, Giuraniuc et al. 2013). However, the att sites that grant modularity in 

Gateway cloning remain in the assembly as large scars between parts which can 

influence expression behavior (Chee and Chin 2015). 

Multiple HE assembly standards have arisen in recent years including an 

adaptation of the BioBrick standard termed iBrick (Liu et al. 2014) and the 

HomeRun Vector Assembly System (HVAS) based on a modified Gateway 

assembly standard (Li et al. 2014). These assembly systems also leave scars 

between assembled parts (i.e. residual modified or inserted sequences). In HE 

standards, the scars are generally larger than the BioBrick standard due to the 

increased size of the recognition sequence. 

1.2.3 Overlapping ends 

In order to streamline complex DNA assembly beyond the capabilities of 

traditional RE cloning, various methods rely on the annealing of complementary 

sequences by using parts with long overlapping ends to assemble intermediate 

parts (Horton et al. 1989, Bitinaite 2007, Gibson et al. 2009, Quan and Tian 2009, 

Annaluru 2012). Overlapping ends methods can be seamless or may use linker 

sequences leaving scars between parts in order to increase modularity. These 
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assembly methods are often used in concert with computer aided design tools to 

optimize assembly and design oligos automatically (Hillson et al. 2012, Appleton 

et al. 2014). 

Gibson assembly has become a common method in research laboratories 

with 48% of researchers surveyed reporting current use of the Gibson method 

(Kahl and Endy 2013). This scarless method allows for precision cloning of 

complex devices through synthesis of intermediate parts. However, though the 

cost of synthesis continues to decrease, Gibson and similar methods largely 

remain cost prohibitive for combinatorial assemblies and iterative design strategies 

(Kosuri and Church 2014).  

1.2.4 Type IIS restriction endonucleases 

An increasingly large collection of assembly standards relies upon Type IIS 

restriction endonucleases (Casini et al. 2015). These enzymes recognize non-

palindromic sequences and cut at a specific distance up or downstream of the 

recognition sequence. The first method published using these enzymes, Golden 

Gate (Engler et al. 2009), uses PCR products or stored plasmid DNA and two 

enzymes in a simultaneous one-pot digestion-ligation reaction. By reusing DNA 

parts, minimizing synthesis costs, Golden Gate formats tend to be less costly than 

Gibson assemblies.  

A variety of assembly standards have been published which utilize or modify 

the Golden Gate assembly strategy including Modular Cloning (Weber et al. 2011), 
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GoldenBraid (Sarrion-Perdigones 2011, Sarrion-Perdigones et al. 2013), BASIC 

(Storch et al. 2015), and yeast Golden Gate (yGG) (Agmon et al. 2015). 

Increasingly, combinations of assembly methods are being used to efficiently build 

complex DNA devices (Werner et al. 2012). This is the case with BASIC which 

combines overlapping ends and Type IIS enzymes to create an idempotent parts 

which are attached in a multipart single-tier assembly using linkers (Storch et al. 

2015).  

1.2.5 Modular cloning (MoClo) ï Type IIS standard 

Of the assembly methods developed to date, only one, MoClo, has 

significant part libraries available for eukaryotic (Weber et al. 2011, Duportet et al. 

2014), yeast (Lee et al. 2015), plant systems (Engler et al. 2014) and now also for 

E. coli (Iverson et al. 2015). MoClo exploits user-defined overhangs specific to 

each part type such as a promoter or a coding sequence (CDS), thereby creating 

interchangeable DNA modules in the form of plasmids. This format allows for 

simple library propagation and combinatorial assembly from a library of reusable 

parts with reliable ligation of up to six DNA fragments in a one-pot reaction (Weber 

et al. 2011). 

The original MoClo publication described a complex system using two color 

and three antibiotic selection in a rotating hierarchical assembly standard (Weber 

et al. 2011). These protocols called for high concentrations of DNA and long 

reaction times (>5 hours) and were cost prohibitive (~$10 per reaction). In order to 
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be effective as a high throughput assembly standard in E. coli, a more efficient 

protocol was needed.  

Here we have optimized the published protocols, simplified the hierarchical 

assembly format, and created a library of reliable DNA parts for use in E. coli. The 

CIDAR MoClo Library described in Chapter 3 provides the first E. coli Type IIS 

compatible part library and is now available through Addgene (Iverson et al. 2015). 

This library enables rapid combinatorial assembly in bacteria and has practical 

applications in many fields including protein engineering, expression tuning, and 

library screening.  

To demonstrate the utility of the CIDAR MoClo Library outside of the 

synthetic biology community, we have collaborated with the Tolan lab in the 

Biology department at Boston University to tune the protein expression of two 

variants of the rabbit aldolase protein and enable isolation of the heterotetramers 

formed when these two variants are co-expressed. To employ CIDAR MoClo in a 

synthetic biology context, in Chapter 5 we produced a bioelectronic pH-mediated 

genetic logic gate with DNA circuits built using MoClo and integrated with 

Raspberry Pi computers, Twitter, and 3D printed components. An overview of 

these three chapters can be seen in Figure 1-2. 
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Figure 1-2 Overview of thesis. Chapter 3 describes the development and optimization of the 

CIDAR MoClo assembly standard and E. coli part library. Chapter 4 demonstrates the utility of this 

library and part characterization data to rationally design a equimolar dual expression cassette for 

production of heterotetrameric alodase proteins. Chapter 5 explores applications of the CIDAR 

MoClo assembly standard in devleoping bioelectronic cellular logic systems and incorporates 3D 

printing and computer numerical control (CNC) milling.  

1.3 Aldolase enzymatic and moonlighting functions 

Aldolase enzymes catalyzes an aldol reaction or its reverse. Two classes 

of aldolase have been identified with class I enzymes being cofactor-independent 

in catalyzing aldol reactions while class II enzymes employ a metal ion cofactor 

(Rutter 1964). Fructose-1,6-bisphosphate (Fru 1,6-P2) aldolase, referred to 

commonly and in this writing as simply óaldolaseô, has a central role in fructose 

metabolism, glycolysis, and gluconeogenesis.  
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Aldolase catalyzes a reversible reaction that splits fructose 1,6-

bisphosphate into dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-

phosphate (G3P) (Horecker et al. 1980)(Figure 1-3a). Aldolase isozymes are 

further classified by expression in different tissues. Aldolase A, found in muscle, 

and aldolase C, found in brain, show higher efficiency for Fru 1,6-P2 versus 

fructose 1-phosphate (Fru 1-P) as these enzymes are primarily involved in 

gluconeogenesis and glycolysis. Aldolase B however shows equal efficiency for 

the two substrates corresponding to the importance of fructose metabolism in the 

liver where it is predominantly expressed (Penhoet and Rutter 1971). 

Monomeric and dimeric aldolase possess full catalytic activity (Beernink 

and Tolan 1994, Beernink and Tolan 1996), yet aldolase is found only as tetramers 

in vivo (Penhoet et al. 1967, Penhoet and Rutter 1971) with the exception of rare 

mutations which disrupt the dimer interface. Therefore the tetrameric form implies 

other functions for aldolase beyond the classical catalytic activity of the protein. 

With a dissociation rate of 10-25 M3 (monomer-tetramer equilibrium) (Tolan et al. 

2003), aldolase tetramers demonstrate an unusually stable formation compared to 

other glycolytic enzymes.  

Penhoet and Rutter (1971) dismissed the possibility of allosteric regulation 

with steady-state kinetic analysis showing no cooperativity. In a study 

demonstrating that the structure of the dimer and that of one hemisphere of the 

tetramer do not differ significantly, the researchers conclude that stability of the 
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tetramer suggest aldolase evolved as a ómultimeric scaffold for non-catalytic 

functionsô (Sherawat et al. 2008). Supporting this assertion, class I aldolases 

display a high degree of amino acid conservation at both the active site and subunit 

interface residues (Rottmann et al. 1984, Rottmann et al. 1987, Sygusch et al. 

1987). 

The tetrameric form of aldolase has two distinct subunit interfaces; the A 

interface is hydrophobic while the B interface is hydrophilic (Sherawat et al. 

2008)(Figure 1-3b). Disruption of either interface by mutations at key sites leads 

to the dissociation of the tetramer into dimer form. These mutations do not, 

however, dramatically alter the tertiary structure of aldolase (Sherawat et al. 2008).  

A clinically relevant mutation, D128G, disrupts the B interface and has been 

associated with a rare nonspherocytic hemolytic anemia (Kishi et al. 1987). 

Aldolase with D128G or other mutations of this residue maintain catalytic activity 

with reduced thermostability and are found in dimer form. Mutations of Gln-125 

also disrupt the B interface while maintaining actin binding activity (Beernink and 

Tolan 1994).  

Dimer formation can also be seen with the disruption of the A interface by 

mutations at Glu-224 and Arg-258. Active monomers can be produced by 

disrupting the remaining interface with a second mutation as seen with the 

Q125D/E224A double mutant (Beernink and Tolan 1996). However, these 

monomers are not seen in vivo. 
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1.3.1 Moonlighting functions 

Consistent with the use of this tetramer as a scaffold, aldolase has been 

noted to moonlight in a variety of cellular processes. Many of these involve binding 

to F-actin, such as signal transduction, cell motility, and vesicle trafficking (Wang 

et al. 1996, Wang et al. 1997, Schindler et al. 2001, Ritterson Lew 2012). Known 

moonlighting interactions of actin are summarized in Figure 1-3c.  

Of particular interest, aldolase interacts with the thrombospondin-related 

Apicomplaxan protein (TRAP) family of transmembrane proteins found in the 

protozoan parasites responsible for malaria and toxoplasmosis (Sibley 2003). 

Aldolase forms a bridge between TRAP proteins and the actin cytoskeleton. This 

bridge allows the parasites to move, enabling infection (Jewett and Sibley 2003).  
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Figure 1-3 Aldolase function and moonlighting. (a) Aldolase function in 

glycolysis/gluconeogenesis. (b) Aldolase tertiary structure, tetramer. (c) Known protein interactions 

involving aldolase suggesting roles in signal transduction, motility, and vesicle trafficking.  

Previous research on the interaction between aldolase and actin proteins 

has determined that aldolase enzymatic activity and actin binding activity are 

independent. Mutations that affect enzyme activity do not hinder actin binding and 

vice versa (Wang et al. 1996). In particular, an arginine residue was substituted to 

create the R42A mutant aldolase which is catalytically active yet has a 20-fold 

decrease in affinity for F-actin. Conversely, the D33S variant retains affinity for F-

actin while being catalytically inactive (Wang et al. 1996).  
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1.3.2 Decorating F-actin 

Aldolase forms a scaffold for actin filaments, facilitating crosslinking 

(Schindler et al. 2001, Jewett and Sibley 2003, Pirani et al. 2004, Pirani 2008) 

(Figure 1-4a,b). The predominantly tetrameric aldolase offers two actin binding 

surfaces, functioning to crosslink actin filaments in non-symmetrical arrays making 

characterization of the binding interface difficult. An aldolase oligomer which 

creates symmetrical arrays is needed to decorate actin for structural determination 

of the binding interface by electron microscopy. 

The D128V aldolase mutant forms a dimer and functions as a scaffold for 

actin filaments without providing a second surface for crosslinking (Figure 1-4c). 

However, the symmetrical structure of the D128V dimer inhibits elucidation of the 

binding interface. A dimer-of-dimers in which only one dimer is able to crosslink 

could provide an appropriate aldolase-actin interaction for structure determination.  

A His-tagged wildtype rabbit aldolase (HRA) in a dimer-of-dimer formation 

with the R42A actin-binding-deficient aldolase variant may provide the structure 

needed for structure determination (Figure 1-4a,d). However, the N-terminal His-

tag appears to have a significant effect on protein expression such that duel 

expression of these otherwise nearly identical aldolase variants in the pETDuet 

expression plasmid produces HRA at a fraction of the level of R42A (Ho and Tolan, 

personal communication). High levels of protein expression of both variants is 
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needed to either produce predominately dimer-of-dimer heterotetramers in vivo or 

to create them in vitro through hybridizatoin.  

With the in vitro method for producing heterotetramers, isolated protein of 

each variant can be denatured to form monomers then mixed to produce all 

possible heterotetramers compositions. These are then separated by charge with 

chromatography on a salt gradient. However, loss of protein during renaturation 

and charge separation steps have thus far prevented significant production of 

dimer:dimer aldolase tetramers for structure characterization experiments.  

In order to produce predominately dimer-of-dimer heterotetramers in vivo, 

equimolar expression of these two variants is required in a single plasmid. 

Previous attempts at dual expression have resulted in an approximately 1:10 

difference in expression of R42A to HRA due, apparently, to the N-terminal His-

tag (Ho and Tolan, personal communications). To address this issue, we have 

used the CIDAR MoClo Library and previously gathered part characterization data 

to tune the expression of HRA and R42A and assemble a dual expression plasmid 

with approximately equimolar expression of HRA and R42A.  
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Figure 1-4 Aldolase HRA-R42A heterotetramers for decorating F-actin. (a) Aldolase CDS and 

protein monomer icon legend is shown. Wildtype aldolase has both traditional catalytic activity and 

actin-binding ability. His-tagged wildtype (HRA) retains both catalytic and actin-binding activity. 

R42A aldolase mutant retains catalytic activity while demonstrating a 20-fold decrease in actin-

binding activity. (b) Actin requires a scaffold upon which to structure filaments. Addition of µM 

wildtype aldolase provides a sufficient scaffold. As only a dimer is needed for scaffolding purposes, 

the stable wildtype tetramer creates crosslinked structures by providing two actin binding interfaces. 

(c) In comparison, the D128V disrupts the tetramer interface and this mutant exists predominately 

in dimer form. D128V dimers allow for actin scaffolding without crosslinking. However the 

symmetrical form of the dimer makes defining the actin binding interface difficult. (d) HRA-R42A 

heterotetramers may enable actin scaffolding while preventing crosslinking with a non-symmetrical 

aldolase complex. The charge difference between HRA and R42A should allow for the separation 

of different heterotetramers identifies. The species highlighted inside the black box are needed for 

actin-decorating. The bottom two-two heterotetramer is not expected to bind actin and will have no 

influence on downstream experiments.  














































































































































































































































































