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APPLYING HARDWARE DESCRIPTION LANGUAGES
TO GENETIC CIRCUIT DESIGN
ROZA GHAMARI

ABSTRACT

Synthetic biology has recently gained attention for its focus on faard engineering
new biological systems. In particular, many researchers have istigated how to as-
semble genetic regulatory networks; these networks are a collentof elements enabling
DNA transcription (promoters) and translation (genes). If one iews transcriptional sig-
nals and translational products as either present (1) or absend) then analogies can be
made between certain genetic regulatory networks and digital etemnic logic circuits.
Consequently, by applying existing approaches in electronic circuitedign to genetic
circuits, the complexity, reliability, and robustness of genetic redatory networks will
greatly increase.

In this work, we propose a methodology and a software framewof&r applying
various electronic digital circuit design methodologies to genetic raligtory networks.
The study of electronic circuit design has matured in many areas; tee, the algorithms
and approaches utilized for silicon based circuits are highly optimizeché understood.
We focus on Verilog, a commonly used hardware description langua@¢DL) for the
design of complex electronic systems. Although Verilog supports itementing di erent
types of designs such as analog, mix-mode and digital sequentiatuits, we chose digital
combinational circuits which form the basis of the other types of @uits. Furthermore,
by supporting combinational genetic circuits in Verilog, other reseehes can elaborate
on our approach to design other circuits types and families.

The main contribution of this thesis is a software tool named Cello (de.ogic). By

implementing \Compilation", \Mapping" and \Assignment" stages in Cello, we provide

\'



a complete design ow for genetic regulatory networks from specation to nal DNA
sequence. Moreover, for each stage in Cello's synthesis proces®@timization algo-
rithm is implemented. In general, the goal of the optimization algoritms is to decrease
the complexity of design and increase the reliability of the nal genet regulatory net-
work. We demonstrate the feasibility of the proposed algorithms @nmethods as well

as beginning the process of experimentally validating the results.

Vi
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Chapter 1

Introduction

In the recent years, synthetic biology has gained the attention aohany researchers in
various disciplines. The goals of this eld are to design and construcivel biological
systems. Often, this requires creating new biological parts, degg and circuits based
on speci ¢ applications. The main four category of the applicationsfdhis eld are:
biotherapeutics, bioremediation, bio materials and bio sensing. Reusf constructs is
another target in the scope of synthetic biology (Baker et al., 20D6 Ideas such as
abstraction, standardization and modularity are key elements ofyathetic biology.

Synthetic biology truly is the intersection of three di erent elds, Biology, Chemistry
and Engineering, where researcheengineerdevices considering thehemical reactions
of biological elements (Endy, 2005).

In system biology, scientists study the complex interactions amongological systems
and are often concerned about modeling existing systems accetgt On the other
hand, synthetic biology focuses much more on forward engineeriajcomplex arti cial
living systems to investigate natural biological phenomena and implemnt a variety of
applications.

In the eld of synthetic biology, systems can be designed for varisuapplications.
For instance in bio-therapeutic applications, researchers modifigscherichia coli (E.
coli) bacteria's DNA for enabling it to seek out and destroy cancergutumors (An-
derson et al., 2006). Another example of the synthetic biology's alpgation is drug

synthesis, such as the antimalarial drug precursor engineered ieagt (Ro et al., 2006).



Moreover, synthetic biology supplies various bio materials, such asgolfuels made of
synthetic controls generating gas from sugar (which is the most ixggensive material)
(Keasling and Chou, 2008), (Dunlop et al., 2010). Sensing of biolodicaaterials, na-
ture compatible culture and biodegradability are some of the main adwtages of the
synthetic biology products.

However, while this eld can be positively e ective for human being's lifethe innova-
tions are indolently developed in comparison to other elds such as etacal engineering.
Investigations show that, although the number of systems and diees designed in syn-
thetic biology grows during the last decade, the complexity of theskesigns did not have
a considerable increase (Purnick and Weiss, 2009), (Chandran &t 2011).

On the other hand, the increase in the complexity of the circuits in ta eld of
electrical engineering increases by an order of magnitude. Comipgr the produced
electrical circuits of 20" century with the current circuits, shows us that in addition to
elaboration of technology, the tools for design automation are csiderably improved.
About 40 years ago, the design of an electronic device was mostlyfpemed manually,
while even imagination of not having the design automation tools in theucrent time is
impossible.

Genetic circuits are one of the main products of synthetic biology. genetic circuit
may be termed genetic regulatory network (GRN); a set of DNA segents with speci ¢
functionalities indirectly interacting with each other. In a GRN, the gene expression
IS regulated at various molecular levels, from transcription to pogtanslation, through
various feedback mechanisms (Myers, 2009), (Khalil and Collins, 23).

Considering the fact that one of the important obstacles of genetcircuits elabo-
ration is the exponential increase of design complexity, it could be mduded that the
design automation tools can be a missing part in the world of synthetlwology.

One of the main requirements of the automation is design encapsudat. Multiple



researches have been performed and categorized the abstoactevels into DNA, parts,
devices and systems (Baker et al., 2006). Some bio-design autaomratools have been
considering these categorization in their data models (Marchisio aigtelling, 2009) and
(Bilitchenko et al., 2011).

In addition to data models, tools for describing circuits and interpréng their models
are also required. Similar to electronic circuits, a genetic circuit canebmodeled in a
schematic level, in which the pre-developed components are coredcto each other
using a graphical user interface. The schematic level descriptiofs@ provides the de-
signer with designing hierarchical systems. Two examples of scheimdased design
environments are TinkerCell by (Chandran et al., 2009) , (Chandraet al., 2010) and
Spectacle which is a part of Clotho tool suite by (Xia et al., 2011), (emore et al.,
2009). However, the ability to design complex systems using scheitsis limited, since
the modeling is completely structural and includes high human interéon.

Hardware Description Languages (HDL) are utilized for electronidrcuit design for
about ve decades (Mermet, 1993). The main goal of these langyes is to provide the
user with the ability to describe and model a circuit in an abstract leve High number
of automation tools are developed for interpreting these HDL's andynthesizing the
actual circuit considering the design constraints. Verilog is one theell-reputed HDL's
among Electronic Engineers (Thomas and Moorby, 1995).

In this thesis, a methodology is proposed to synthesize genetic aits described in
Verilog. The functional description of the GRN is modeled using VerilogiDL and the
synthesis tool automates the design of GRN's. A high level illustratioof the design
ow is shown in Figure 11. The goal of this work is to automate a design ow in which a
desired system is described in a high level language. This descripti@pnesents a set of
interconnections among logic operators, being later transforméd an abstract genetic

regulatory network (AGRN). The resultant AGRN is converted to aDNA sequence
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Figure 1 1: High level illustration of the design ow. An idea is described
using a high level languages which constructs the structure of a aziit.
An abstract genetic regulatory network (AGRN) is generated fnm the
structure. Next, the AGRN is assigned to the parts stored in an @essible
database and the actual sequence is generated. The nal stag@ssembly
of sequences on biological lab and system experiment.

based on an accessible library of available synthetic genetic partsn&lly, the physical

system is implemented and experimented in the biological laboratory.



Chapter 2

Background

2.1 A brief history

The Central Dogma of molecular biology is the process of protein mhaction from de-
oxyribonucleic acid (DNA): DNA replication, transcription and trandation. The central
dogma illustrates that once a protein is produced it does not returto the DNA en-
coding it. In the rst stage of this process, DNA replicates itself. Tanscription is the
second stage of the process during which mRNA (messenger ribdeic acid) is created
from DNA by RNA polymerase. The last stage is the translation of RNAo protein.
In this stage the ribosome binds to RNA and translates the code ofiple nucleotides
(codons) to amino acids according to the genetic code. Figurelzhows the stages of
the central dogma and their inputs and outputs.

DNA is the long term storage molecule of biological information for theonstruction
and function of living organisms. DNA is a sequence of four basic cheal compounds
which are called bases: Adenine (A), Thymine (T), Guanine (G) and Ggsine (C).
The structure of DNA is a double helix. Due to the hydrogen bonds eated between
bases, base A pairs with T with two hydrogen bonds between them dase G pairs
with C with three hydrogen bonds between them. This results in a side double helix
of DNA where the bases in one strand are bound to their complemsnin the other
strand. Since DNA is made of double stranded pairing between theufobases, the

length measurement unit for DNA is \base pair" (bp).



The segments of the DNA sequence which are translated to protene called genes
(coding sequences). In addition to genes, multiple regulatory segnts exist in DNA
controlling the transcription and translation stages. The segmeraf DNA which triggers
the transcription of DNA to mRNA is called the promoter. The promoer controls the
attachment of RNA polymerase (an enzyme for RNA production) t@ conserved site in
the DNA with a speci ¢ a nity. The binding of RNA polymerase to the pr omoter region
can be in uenced by the presence or absence of speci c transtign factors (TF). TF's
either repress or activate the promoter; the former reaction tas the transcription o
and the latter reaction starts or induces the transcription. In adition to the promoter
which controls the start of transcription, a terminator sequencés required to end the
transcription.

The third stage of protein biosynthesis is the translation of mMRNA indt amino acid
chains, which can form functional proteins. This process startsylithe binding of the
ribosome to MRNA generated from DNA during transcription. Anotker regulatory
region of a DNA is the Ribosomal Binding Site (RBS) which is transcribedo the
MRNA. The ribosome binds to the transcribed RBS sequence in mRNA.

In general there are three basic segments of DNA which regulateetcentral dogma
stages: promoters, RBS and terminators. In addition to the redatory elements, the
gene segment exists which codes for the protein. Each of thesenglets have an abstract
icon representing them in di erent tools, which are demonstrated ifrigure 22 (e). A
genetic regulatory network (GRN) can be de ned as a set of DNA geents with speci c
functionalities and various interactions with each other. In a GRN gee expression is
regulated at many molecular levels, from transcriptional to postranslational, through
various feedback mechanisms (Myers, 2009), (Khalil and Collins, ). In other words,
the GRN is a circuit of genetic elements in which \wires" are the chemitateractions

among these elements.
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Figure 2 1: The central dogma describes the stages of protein biosynthe-
sis. DNA is replicated and make copies of itself in the rst stage. DNA
is transcribed to RNA by RNA polymerase. Translation is the nal stage
during which the codons of RNA are translated to protein amino acids

Various genetic circuits have been proposed and experimented ithgr the recent
decade. Figure 2 illustrates some examples of proposed genetic circuits. The Collins
Lab proposed a genetic toggle switch (Gardner et al., 2000) in whiche cell's output is
changed between stable genetic states (Figure22a)).This switch is constructed from
two subcircuits made of a promoter regulating a gene. Moreovehd genes inside two
subcircuits regulate the promoters on the other set.

The GRN (b) in Figure 2 2 shows the boolean logic AND gate proposed by Chris
Anderson (Anderson et al., 2007). The output of this gate uorees green if both
inputs are present. This GRN has both transcription level regulatizs controlling the
input promoters, and the translation level regulation of two interal genes' RNA's.

There are also sequential logic based genetic circuits investigateg synthetic bi-
ologists such as the JK latch proposed by Alfonso Jaramillo (Rodrigand Jaramillo,

2007). This circuit, in Figure 22 (c), has more complex structure with multiple regu-



latory relations among genes and promoters in the GRN. JK latchegshorically were
proposed as memory elements in electronic devices. Thereforeesda GRN may serve as

a biological memory device.

Figure 2 2: Four proposed and experimentally created Genetic Regu-
latory Networks (GRN) and the iconic representation of di erent INA
segments. (a) is a toggle switch with the output representing theable
genetic states. (b) is a GRN for a boolean logic AND gate which can be
controlled from outside of the cell. This gure is from (Anderson et g
2007). (c) is a sequential logic JK latch which can be utilized as a mermyor
element. (d) is a boolean logic NOR gate; this is the gate that we refer
to extensively in this thesis.(e) shows the icons representing sontfetioe
genetic elements in di erent tools and standards.



Figure 22 (d) shows the boolean logic NOR gate proposed by Voigt Lab (Tamsir
et al.,, 2011). This gate is extensively referred in this work. The presce ofinl and
In2 small molecules (or transcription factors), which are respectivelprabinose and
Tetracycline for the illustrated implementation, controls the reguléon of the CI gene.
Hence, if any of the two inputs are present the CI production will béurned on. The
TF of ClI represses the Cl promoter (pCl) in the second part of t circuit. As a result,
by translation of CI's RNA, the pCl will be repressed which consequdy turns o the
yellow orescent protein's (YFP) production. As a result, we will seg/ellow uorescent
only if both inputs are absent.

An abstract genetic regulatory network (AGRN) is a GRN with no spei ¢c sequence
assigned to the genetic elements. We extensively use two speci ents in this thesis:
genetic motifs and genetic primitives The de nition of a genetic motif is a set of
genetic primitives which present the topology of a genetic gate at aabstract level.
In other words, a genetic motif is an AGRN of a single genetic gate suas a NOR
motif. Consequently, a genetic primitive is an abstraction of a spea genetic element
without having any assigned DNA sequence. For instance a \repsgisle promoter” is a
genetic primitive which represents a promoter repressible by, smafolecules, such as

Tetracycline, or transcription factors (TF), such as Lacl.

2.2 Clotho data model

The designed software framework for our synthesis ow is implemexl as a Clotho App.
Clotho (Xia et al., 2011) is a software suite designed for engineeringnthetic biology
systems and managing the data related to them. Clotho o ers a datmodel captur-
ing the demands of synthetic biology data. Furthermore, the cometion to di erent
databases in di erent locations is provided by this data model. Manyigrent objects

are de ned in this model among which \parts" and \features" are &tensively employed
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in this work.

Parts are objects assigned with speci c DNA sequences and asbgnprotocol for-
mats. It is possible to make composite parts by packaging more thame part together.
Features, similarly, have sequences assigned to them. Howevéeyt do not have any
speci ¢ format; hence, they are not compatible with any assemblyrgtocols. Features
are meant to capture biological functionality. Clotho provides its usrs with the abil-
ity to create and modify features and parts, and store them in di eent databases.
The Clotho features are organized in families. Families represent thenctionality of a
feature which allows for relationships between promoters and gen® be established.

Figure 23 shows an abstract view of the Clotho data model discussed in thiscgon.

Figure 2 3. Partial abstract view of the Clotho data model. The data
model provides the user with di erent objects. Two of these obgts are
\parts" and \features" demonstrated in this gure. Features have families
which categorize them based on their genetic functionalities. The redr
speci cation of Clotho is connectivity to di erent databases amongarious
research centers or institutions.
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2.3 High level languages for synthetic biology

High level languages (HLL) provide mechanisms for designers to nebar describe a
structure that is often able to be interpreted by computers. HLLs are often designed to
be human readable and to conceal low level details from the user.ridais HLL's have
been developed for many of the science and engineering disciplines ifistance C++,
Java and Perl among others).

Similarly, in synthetic biology, some research has been devoted to@stigating HLL's
for genetic circuit design. Proto is a spatial computing language faleign and imple-
mentation of biological systems (Beal et al., 2011). In another woBilitchenko et al.,
2011) a HLL, named Eugene, is introduced for speci cation of symttic biological de-
signs. In this language, the user has the ability to de ne very expssive hierarchical
primitives and constraints and build a system based on these. Peden and Phillips
proposed GEC language (Genetic Engineering of living Cells) which resrd the logi-
cal expressions to the interactions of proteins and genes (Peskm and Phillips, 2009).
GEC's interpreter, similarly to Eugene, generates the DNA sequeador the resultant
composite part.

However, all of these researchers propose new languages (Rurand Weiss, 2009),
(MacDonald et al., 2011). In this work, we utilized an existing languagedeveloped for
electronic circuit design. We proposed using a hardware descriptitenguage (HDL)
called Verilog (Thomas and Moorby, 1995) for describing syntheticidiogical systems.

Using Verilog has several potential advantages:

It provides a very mature, expressive language with a large userdag tremendous

library support, and synthesis tools from higher level languages.

Algorithms and techniques for logic synthesis of electronic circuitsac now be

re-cast more easily to apply to genetic circuits.
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It connects electrical engineers to the eld of synthetic biology j@viding increased

collaborative opportunities.

One of the main goals of this thesis is to determine whether using ansting language
with wide user base such as Verilog will be possible and bene cial forsting genetic

circuits or not.

2.4 Compilation and synthesis tools for synthetic biology

In the design automation process, the HLL's facilitate describing deggns and modeling
them at an abstract level. In addition to the HLL's, automation requres a compiler
to interpret the input description and transform it to a processale format. Moreover,
extraction of an implementable system requires a synthesizer pag the compiled de-
scription and generating the output based on a set of de ned canaints.

Tools developed for automation of synthetic biological systems alpooposed various
compilers and synthesizers. For example, BioCompiler creates a g@etwork based on a
set of regulatory motifs (Beal et al., 2011). Similar to the synthesisiethod investigated
in this thesis, some optimization algorithms are also provided for theompiler. The
main di erence between BioCompiler and Cello is that the generated mped GRN in
the former is based on the spatial data ow representation and irhe latter is based on
the interconnection of functional logic gates.

GenoCAD is another tool for designing synthetic DNA sequences4&r et al., 2009).
In this work, the results produce systems considering a set of nfdbased \production
rules". Similar to Cello, GenoCAD has its own data model and providehé users with
access to shared and protected part libraries. There are two maiinerences between
GenoCAD and Cello. First, GenoCAd does not support any HLL for dggning circuits.
Moreover, GenoCAD performs based on the rules and does not ird#uany optimization

techniques.
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In this thesis, the synthesis ow is derived from synthesis methotlzgies in electronic
engineering. The key component in electronic circuit synthesis is call&echnology
mapping" in which a technology independent logic network is transfored into gates
available in the standard cell library of the target hardware platfom. The technology
mapping methods are mostly based on algorithms for mapping diredt@cyclic graphs
(DAG) (Stok and Tiwari, 2002), (Keutzer, 1987). The steps of tehnology mapping are
decomposition to primitive cells, pattern matching of the library elemats to nodes in
the generated DAG, and nally covering of the DAG based on the mogptimal matches.

In our proposed synthesis process, the technology mapping stajansforms the
nodes in the DAG to their functional or structural matches in the sailable biological
motifs library. As a result, each biological motif includes a directed &clic subgraph
(DAsG) which represents its functionality and structure at the gée level. The algorithm

for mapping is optimized for nding a mapped DAG with the minimum numbe of nodes.
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Chapter 3

Overview

In this thesis, we propose a process ow and a software framewdor designing genetic
regulatory networks using hardware design methodologies. The iripof our process
ow (as well as the software toll) is a circuit description in Verilog langage. The
nal output is a DNA sequence which if implemented will demonstrate lte described
behaviors. The main ow of our synthesis approach can be categmad into three basic
stages. The process of synthesis inside our software tool, Celkarts from compiling
the input description of the circuit. We called this rst stage \Compilation". Next,
in the \Mapping" stage, we replace the basic boolean operators, wh are utilized
in the input circuit description, with equivalent motifs of genetic gats. In the nal
stage, \Assignment", Cello assigns actual sequences to the mstdnd generates the
nal sequence.

Figure 31 shows a high-level view of each process stage. Each colored bothén

gure demonstrates one stage of process with the resulted outpof that stage.

1. Compilation

The input for the Compilation stage is a compatible Verilog le (ccVerilog Cello
currently supports a limited subset of available features in Verilog. fie Directed
Acyclic Graph (DAG) data structure is utilized for representing corpiled input
description. At this stage, Cello transforms the compiled descriptioto a single

gate based DAG. Furthermore, a gate level optimization is perfored on gate-level
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DAG. More detailed information about the compiler and the algorithmss given

in chapter 4 section 4.1.

. Mapping In the Mapping stage, operational vertices of the DAG are repladeyy
elements from a library of biological logic gates. This stage is conceally analo-
gous to technology mapping in electronic circuit design (Keutzer, 89) , (Lehman
et al., 1995), in which operations are mapped to their equivalent traistor based
gates. Often in electronic circuits the logic decompositions are camted to NAND
based single gate circuits since this structure is favorable in silicon.oWever, in
synthetic biology, there are feaw basic gates and no consensusmifmality. More-
over, di erent types of gates can be used in a genetic circuits, senof which can
function based on transcription elements (e.g. promoters) (Frea et al., 2007),
(Tamsir et al., 2011), (Yokobayashi et al., 2002) while others are bad on transla-
tional elements (e.g. ribosome) (Rinaudo et al., 2007), (Stojanovand Stefanovic,
2003), (Anderson et al., 2007). Hence, having a library of basic paenables users
to implement circuits according to their needs and constraints. Athie end of this
stage, a motif level graph of the genetic circuit is created which csists of genetic
primitives such as promoters, coding sequences and ribosomal lmgdsites. In

chapter 4 section 4.2 the details of this stage is pointed.

. Assignment In the nal stage, real sequences are assigned to the primitiveside
the motif-level DAG. user selects a set of transcription factordait can be consid-
ered in the circuit and assigns each input and output port a transiption factor
(this can be extended to wires which are not currently available in Celo This
selection will e ect assignments to the other primitives. An orthogoal set of parts
regarding to circuit primitives are fetched from a connected datase. Therefore,

cross-talks among parts inside the circuit are removed. At the eral sequence of
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DNA which is in fact a set of composite parts is generated by Cello. Thgenetic
network represented in nal sequence is consistent with the initiahput model of

the circuit. We discuss this stage in particular in chapter 4 section 4.3

All of these three stages include optimization algorithms for improvopoutput circuit.
For a more complete design ow, two additional level of optimization i@ also required.
Although this project does not address these additional optimizeins, they have been
investigated by other research groups. The rst level of optimizan can be applied on
the Verilog description code to make design more e ective based onetlent targets.
In electrical engineering eld many researchers have been investigd approaches to
translate the behavioral Verilog description to structural desgption. For instance,
Cadence RTL Compiler (Systems, 2011) provides a global solutiorr &ynthesizing an
optimized net-list for the input description. The trade o among di erent optimization
goals are also considered in such tools. However, as a future workyathesizer tool
could be designed considering the requirements of the genetic ctsudesign. Moreover,
in order to be physically implementable, the output DAN sequence né&to be processed

and checked for assembly requirements.
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Figure 3 1: Three stages of genetic circuits synthesis process ow. The
input circuit model is compiled into a gate level DAG in the rst stage.
Next, compatible motifs are assigned to each operational vertex the
DAG and the Mapping stage creates a motif level DAG. Finally in the
Assignment stage, the actual DNA sequence constructing therggic reg-
ulatory network is generated.
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Chapter 4

Design Process

This chapter discusses the methodologies and algorithms used togess the Cello com-
patible verilog (ccVerilog) input description and create the nal DNA sequence repre-

sented by a set of composite parts. We propose the following desigw:

1. Compilation (input: ccVerilog; output: gate level DAG)

(&) Compilation and DAG generation (section 4.1.1)
(b) Technology transformation (section 4.1.2)

(c) Gate level optimization (section 4.1.3)
2. Mapping (input: gate level DAG; output: motif level DAG)

(a) Genetic motif selection (section 4.2.1)
(b) Technology mapping (section 4.2.2)

(c) Motif level optimization (section 4.2.3)
3. Assignment (input: motif level DAG; output: DNA sequence)

(a) Constraint determination (section 4.3.1)
(b) Orthogonal feature selection (section 4.3.2)
(c) Feature assignment (section 4.3.3)

(d) Part level optimization (section 4.3.4)
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(e) Output packaging (section 4.3.5)

The details of each of these stages are discussed in their assodiagbsections.
In order to have a more cohesive discussion we use a running exammsed on the
ccVerilog code shown in Figure 4 . The examples and gures of all of the sections in
this chapter refer to this example.

It should be mentioned that in order to automate the implementatiorprocess some
post-synthesis processes are required. These external psses prepare the resultant
composite parts for liquid handling robot assembly. Information ahd the post-synthesis

stages conludes this chapter in section 4.4.

Figure 4 1: The ccVerilog code for the running example of Chapter 4.
This is a single output (O) circuit, which creates a combinational logic

expression using the input A, B and C. This module only includes a single
continuous assignment statement.

4.1 Compilation

In this rst stage the input ccVerilog le is read and compiled. A direced acyclic
graph (DAG) representing the compiled code is prepared for the Mping stage after

transformation and optimization.
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4.1.1 Compilation and DAG generation

In order to be able to process the input description (ccVerilog) a owiler is required
to transfer the text-based input description to an internal repesentation. this represen-
tation for Cello is an Abstract Syntax Tree (AST). The lexer and paser for Verilog is
generated using ANTL v.3 (ANother Tool for Language Recognitigr(Parr, 2007) (Parr
and Quong, 1995). After applying some changes to the existing grmar le for Verilog
(Ter-Galstyan, 2008), the compiler for generating a hierarchic#AST is created in Java.

An example of the generated AST is illustrated in Figure 2.

Figure 4 2: The ine ciency of the Verilog AST. An example of AST
generated by ANTLR lexer and parser for Verilog. The existing noden
the AST are mostly related to the syntax of the code. These nodese
not considered for synthesis. Red circles in the gure highlight theades
required for synthesis. Moreover, the structure of AST does hiepresent
the ow of data accurately. For example in this AST two di erent nodes
were assigned for input port B. The illustration is created in ANTLRWaks
environment.

As can be seen in the gure, the majority of the nodes in the AST areelated to
syntax (for example each semicolon in the code creates an AST npd®loreover, the
ow of data and gates interconnections are not represented in ¢hAST. As a result,
the generated AST must be converted to a DAG. DAG data structies are primarily

used in the electronic systems algorithms since they can capturestinterconnection of
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components, and also the direction of the information (current) ow (Keutzer, 1987),
(Lehman et al., 1995). Moreover, DAG 's are inherently acyclic for ¢put and input
connections, which is ideal for combinational circuits.

class Vertex f

int index;
Edge outgoing;

g

class Edgef
int index;
Vertex from;
Vertex to;
Edge next;

g

Figure 4 3. The pseudo code for the DAG data structure utilized in
Cello. Since edges are linked to each other, the output degree otlea
node is unlimited.

The pseudo code of the DAG data structure that we used in this wikris presented
in Figure 4 3. This data structure provides us with the ability to have an unregsicted
output degree for each node by having a linked list based implementat of edges.
Considering this data structure, a DAG is simply a list of pointers to wices and edges.
An illustration of the generated DAG for the given AST is shown in Figue 44. The
generated DAG, in other words the \netlist" of the input circuit de<ription, shows
the connectivity of the design. See Appendix A for a discussion onethrestrictions on

standard Verilog for Cello.

4.1.2 Technology Transformation

The main goal of the Compilation stage is to prepare the input circuit escription to be
implemented using the genetic motifs. This concept is similar to techlogy mapping

in electrical circuit design. In integrated circuit (IC) design all of the logic operators
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Figure 4 4: DAG for the AST example shown in Figure £. The required
information for the next stages in the synthesis process is now eedued
in the DAG representation. The ow of data is from output node (O in
this case) towards inputs (A, B and C in this case) in order to have a
canonical structure. The generated DAG is considered the \neitlsof
the input circuit description.

used in the input description are transformed to a single gate typ&ince every boolean
logic function can be expressed using either NAND or NOR operatothe whole circuit
description is transformed to either a NAND-based circuit or a NORased circuit. In
this work our base genetic motif is based on the NOR gate proposeg @@amsir et al.,
2011) and described in the background section 2. we substitute allthe logic operations
in the DAG to their equivalent by NOT and NOR operations.

The algorithm in this work nds all of the non-NOR operation verticesin the graph
and substitutes that node with the equivalent subgraph. The equalent subgraphs for

AND and OR operators are illustrated in Figure 45.
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Figure 4 5: The equivalent NOT/NOR based subgraphs for OR and
AND boolean operations. The OR and AND operation nodes in the DAG
are replaced by their equivalent DAsG. As a result, the transforndeDAG
will be solely based on NOR and NOT gate types.

4.1.3 Gate Level Optimization

The applied transformation approach does not guarantee to prade the optimal result
(i.,e. minimum number of boolean algebraic terms). In other words, ghnumber of
boolean terms after transformation may have increased. As a uls we add another
level of optimization termed \gate level optimization". One of the m& side e ects
of transformation to NOR/INV based boolean network is double negion. This work
implements an optimization algorithm which nds all of the tandem inveters in the
graph and removes them.

In order to provide the user with exibility, an option is provided to remove double
inverters if the transformed circuit is OR/INV based or NOR/INV based. In the former
case, all of the double negations will be removed from the circuit, W in the latter case
we need to keep the format of NOR (which has an INV in front of OR)rad remove double
inverters that are NOT part of the NOR gate. Based on the experiental results shown
in the supplementary materials of (Tamsir et al., 2011) the implementi®ns that have
outputs a ected by repressible promoters have higher threshaddetween high and low

outputs. Consequently, using a NOR/INV based network may inciese the reliability of
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the circuit.

Other logic minimization techniques can be applied at this level. Quine anic-
Cluskey logic minimization algorithm (Katz, 1993) is one of the most pagar approaches
and can be automated; however, it has high time and memory compigxand limits
on the number of variables. A heuristic based approach such as Esgso (Rudell and
Sangiovanni-Vincentelli, 1987) can be used at this level. However,ighmethod is de-
signed for Programmable Logic Array (PLA) based circuits and geretes two-level
optimized expression. A multi level optimized expression can be eatted from the
optimized two-level output of Espresso by factorization. Howeveit again requires
transformation to NOR based network which results in a non-optimeacircuit.

An abstract view of the netlist graph for the running example is showin Figure
4 6. Graph (a) shows the original netlist which is generated after cagaiing the Verilog
code and creating the DAG. By running the transformation algoritm graph (b) is
generated. The substituted equivalent DAsG's for \&" and \" nodes are shown in Figure
45. Graph (c) shows the result of moving of double negations fromehtransformed
graph considering the NOR/INV basic gates. Finally, a complete remval of all tandem

inverters generates graph (d) which is actually an OR/INV based auit.
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(a) (b)

() (d)

Figure 4 6: Netlist view of the (a) original expression, (b) transformed
expression, (c) optimized transformed expression with packag©R gates,
and (d) optimized transformed expression without any restriction The

highlighted nodes (colored yellow) of (a) show the operational noslen

original netlist. Graph (b) has \&" and\ j" nodes replaced with their equal
NOR based DAsG. In the graph of gure (c) only the double invertein

front of the port B is removed. This occurs because removing theher

double inverter nodes would result in the destruction of the NOR siicture

(highlighted nodes). In graph (d) all of the double inverters are raoved

which is the minimal representation of the input boolean expression.
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4.2 Mapping

After compiling the input model and preparing it by transforming to sngle gate type
netlist, the Mapping stage begins. In this stage, an operation angous to technology
mapping in electrical circuit design is applied to the input netlist basedroa library of
available genetic motifs The de nition of a genetic motif is a set ofgenetic primitives
which present the topology of a genetic gate at an abstract level.o@8sequently, a genetic
primitive is an abstraction of a speci ¢ genetic part without having ag assigned DNA
sequence. For instance Repressible Promoteris a genetic primitive which represents
a promoter repressible by small molecules, such as Tetracycline tr@nscription factors
(TF), such as Lacl.

The motif for the biological NOR gate is based on the proposed NORtgan (Tamsir
et al., 2011). This motif is shown in Figure 4. In part (a) of this gure this motif
diagram is drawn using a CAD tool for synthetic biology named Tinker€@l (Chandran
et al., 2009). In Cello since inputs and outputs of a motif can be comtted to other
motifs or I/O ports (TF's), we need to represent the topology of he motif as well as
the primitives. As a result, each motif has a directed acyclic subgragDAsG) related
to it which abstracts the interconnection of the constructing printives. Furthermore,
using the DAG data structure the restriction of not having crosgalk within the gate
can be enforced. Cross talk may be de ned as the undesirable & @f elements inside
a construct on each other. The DAG of NOR maotif is demonstrated ifrigure 47(b).
Please notice that the direction of the edges in the DAG is from outpuo inputs (in
order to have a canonical representation).

Details regarding the internal methods of the Mapping stage are disssed in the

following sub sections.
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(@) (b)

Figure 4 7. Two views of a NOR motif (a) is created using the TinkerCell
tool and (b) is the view of the NOR DAsG in Cello. Having separated
input promoters in DAsSG representation eases the parsing of theetfist
DAG and running of optimization algorithms.

421 Genetic motif selection

One of the main goals of this synthesis ow is to provide users with a x@le design
environment. This can be achieved by providing the ability to select #ntype of motifs
(i.e. abstract genetic gates) that can be utilized in the circuit. The gnularity of motifs

can be dierent and a motif can have a multi-layer hierarchy (similar tomodules in
electronic design). Basically, a user can select a motif or de ne a nfatnd describe its
boolean functionality. For instance, a motif can be a simple bu er or werter, or it can be
a module which instantiates other previously designed motifs. This idas conceptually
similar to the IP-cores (intellectual property cores) in recon guable electronics (e.g.
Field Programmable Gate Arrays).

In addition to the structure of the motif, its functional characteristic is also exible.
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A user can select for example a NOR motif which functions in the transptional level

and connect it to an AND motif which is in the translational level. Providng a design
tool with this level of exibility may lead to more optimized, complex and reliable

designs. However, these features demand more standardizedrahterization criteria in

order to design nal circuits. For instance, transfer functionsdr each motif need to be
speci ed since the input and output signals of two connected mod@enust be matched.
In other words, the high and low threshold levels of an input signal affront gate should
be matched with those of the connected output port of the inputafe. A similar work

has been done in (Yaman et al., 2011).

Cello is implemented as a Clotho app and has access to the Clotho datadel and
database. However, in the current version of the Clotho data metigenetic motifs and
primitives are not de ned. As a result, we do not have a library of gestic motifs with
digital behaviors. Consequently, the stage of motif selection froen external library
is not completely implemented in Cello. However, the structure of th®apping stage
is designed to be exible for the future addition of a library and the allity to select
various motifs. In the current version of Cello, three hard-codemotifs are implemented.
The rst motif functions as an inverter. The second is a two input NQR motif based
on (Tamsir et al., 2011) article. Finally, we proposed a three input NORstructure
in which we simply added a third input promoter to the two input NOR structure.
No experimental tests have been done on the three input NOR yetllustrations of
an inverter and a three input NOR motifs are provided in Figure 8 (a) and (b),

respectively.

4.2.2 Technology mapping

The Verilog description of an input design can be written using any seif boolean

operators. On the motif library side, we can design and implement dirent motifs and
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(@) (b)

Figure 4 8: Schematics of (a) Inverter and (b) three input NOR motifs
drawn by TinkerCell CAD tool. The explanations about how these gais
function are given in detail in Chapter 2.

genetic gates with multifarious boolean functionalities. As a result, iorder to be able
to map an input operator to a motif, an interface boolean function isequired. Using
this boolean function, both the functionality of input description ard the behavior of
genetic motifs need to be represented. The main di erence betwetechnology mapping
in electronic circuit design and genetic circuit design appears in thectahat in electronic
circuits a single gate based technology is selected (for instance NAKCMOS circuit or
Look-Up Tables) while in genetic circuits di erent types of gates cabe used.

Taking this issue into consideration, the boolean functions of all middé are trans-
formed to two input NOR based functions. For instance, Figure 9 illustrates the for
the transformed circuit for three input NOR gate. Two exceptionsare inverter and
bu er motifs, which are not transformed to NOR gates.

The implemented algorithm for mapping is based on pattern matchingnaong the
input graph and the transformed NOR-based graphs of motifs. Eisubgraph isomor-
phism problem is known to be NP-complete (Garey and Johnson, 197¥However, in

this work, we used a cost based heuristic in order to reduce the timemplexity. A list
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Figure 4 9: The boolean equivalent structure for three input NOR gate
constructed by NOR2/INV gates. Similarly to three input NOR, all of
the other motifs' boolean functions are transformed to NOR2/IN based
structures.
of available motifs is created in which motifs are sorted based on theiosts. The cost
here is de ned as the ratio of number of primitives to number of opational nodes in
the transformed boolean graph. For instance, in the case of hagimotifs for inverter,
NOR2 and NORS, the order of the list will be 1- NOR3 2- NOR2 and 3- INV

Two main loops in the algorithm iterate over the DAG. In the outer loop the algo-
rithm runs a breadth rst search and nds the operational nodes For each operational
node, in an inner loop, the algorithm explores the connected subgtaof that node
while the parsed pattern matches with at least one of the available mifs in the list.
The found subgraph will be covered by the motif with the lowest cost

If a node is covered previously, the algorithm does not iterate its iehnited graphs.
As a result, not all of the possible combinations are checked, andettbest mapping
may not be reached at the end. After all of the nodes in the graphraparsed by the
algorithm, the covered subgraphs are substituted by their equilent motif DASG's in
another iteration. The output of the mapping algorithm is a motif levé DAG which is
an interconnection of genetic primitives.

In Figure 410, we demonstrate the results of mapping on the gate level DAG of
Figure 46 (c). In 4 10(a) the blue circles point to the NOR operators in the gate level
DAG. One of the inverter nodes is circled by an orange line. After runing the mapping
algorithm which only includes two input NOR and NOT motifs, the motif level DAG
4 10(b) is created. The substituted motifs for each of the operat® pointed in the DAG



31

4 10(a) are enclosed by the same color lines in the motif level DAG18(b). There are
48 primitive nodes in the DAG (b).

The motif level DAG 4 10(c) is created after mapping the gate level DAG to the mo-
tifs of three input NOR, two input NOR and NOT. As can be seen in the kgure 410(c),
by using a three input NOR, two of the connected NOR operators arnthe inverter be-
tween them are combined. The motif circled in green in 40(c) is the combination of
the two NORs and the INV in the gate level DAG of 410(a). Using this new set of
motifs, the motif level DAG 4 10(c) is generated by 13 fewer primitives (35 nodes).

(@) (b) ()

Figure 4 10: The motif level DAG's generated after mapping the gate
level DAG of Figure 44 using di erent sets of available motifs. The colored
shapes in (a) show the NOR and NOT operators. The motifs mapped t
the operators are also shown enclosed by a same color box. In motif
level DAG of (b) two input NOR (blue shapes) and NOT (orange shays
motifs are mapped. Graph (c) shows the motif level DAG mapped to a
set of three input NOR (green shapes), two input NOR and NOT mots.
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We know of no work that de nitively demonstrates a relation betwee the number of
primitives inside a genetic regulatory network and the reliability or theoptimality of the
network. However, since the number of available genetic parts dmited, a circuit with

a lower number of primitives is more feasible from a physical implemetitan standpoint.

4.2.3 Motif level optimization

As stated before fewer researchers have investigated the op#ation of genetic reg-
ulatory networks. In other elds, various optimization criteria hawe been researched
and methods have been developed. For instance, in electronic citalesign the main
optimization targets are area, timing delay and power consumption.

In genetic networks, no speci ¢ optimization target has been cldgrde ned. Some
criteria have been proposed such as (Beal et al., 2011) and (Masth and Stelling,
2009). In our synthesis process, however, we developed an optation algorithm which
removes the redundant genetic elements from a designed netwoBeginning with the
whole structure of the genetic circuit in the motif level DAG, we can nd the redundant
parts of the DAG. A redundant part is a part which does not have ane ect on the
overall logical behavior of the circuit. For instance a bu er does richave any logical
e ect on the output value of a circuit.

The motif level DAG is created by connecting di erent motifs to eactother. Bu ers
can be created by linking these motifs to each other. The structerof a buer is a
coding sequence which is followed by an inducible promoter. In fachdre is a direct
gene induction (activation) which is same as a bu er. Hence, if we ravwe these elements
and connect the input of the bu er to its output, the functionality of the circuit will not
change.

For instance, the bu er sites in the motif level DAG of Figure 410 (b) are illustrated

in Figure 411. The highlighted nodes (yellow colored) in the DAG 41(a) show the
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bu er sites in the motif level DAG. The algorithm nds ve bu ers in th is example and
removes their nodes from the DAG. Following that, the input of eacbu er is connected
to its output. The result of motif level optimization with bu er remov al is shown in
Figure 411(b). Each highlighted node in 411(b) shows the output of bu er which is now
linked to its input. In the optimized motif level DAG 21 fewer nodes (i.e.primitives)
exist in comparison to the non-optimized DAG.

The removal of buers can be considered an optimization since by g so the
number of required motifs decreases. However, the redundani &s may have other
e ects on the circuit. For example, a circuit might be more reliable if te bu ers are
not removed. Future work should involve experimentally exploring thse concepts after
physical implementation of both optimized and non-optimized circuitén the laboratory

environment.

4.3 Assignment

Our proposed synthesis process starts from the compilation oftimput ccVerilog circuit
description (which creates a netlist DAG of the circuit). The geneitad gate level DAG
can be transformed to single gate type structure and optimized. f#&r this rst stage,
the gate level DAG is converted to a motif level DAG in the mapping sige. The motif
level DAG represents the abstract genetic regulatory networkAGRN) of the input
description. Another level of optimization can also be performed dhe motif level.

After the rst two stages, we have the Assignment stage. The ainaf this stage is to
assign real DNA sequences to the primitives comprising the motif |é8V@AG (AGRN).
The output of this stage is the actual DNA sequence for a set of oposite parts. In
other words, the physical realization of the input circuit descriptia is generated.

This stage is completely linked to the Clotho data model and the assated database.

The sequences of parts assigned to primitives are fetched frometRlotho database.
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In the Clotho data model, each featurkis categorized in a family typé. Based on
the family type, the set of features related to a primitive can be fehed. Based on
the annotation sequences on the parts, the relation between paiand features can be
established. As a result, each motif is assigned to a composite paklore description

about the Clotho data model is given in Chapter 2.

(a) (b)

Figure 4 11: Graph (@) is the result of the mapping stage which includes
ve bu ers. The highlighted nodes show the primitives of bu er motifs.
After running motif level optimization, DAG (b) is created. The high-
lighted nodes in the DAG (b) shows the outputs of the bu ers which g
connected to their inputs.

1This is de ned in the background Chapter 2.
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4.3.1 Constraints determination

We assume that a genetic circuit will have various limitations on the typ of the genetic
elements with which it is constructed. As a result, a nal DNA sequete requires that
these constraints be applied to the circuit. In the current implemeation of the synthesis
process and consequently Cello, we consider constraints appliedatirthe transcription

factors (TF) which exist in the whole genetic regulatory network. &r instance, we
assume the cell in which the designed network is implemented will be eetive if a
speci ¢ type of TF exists. Hence, the designer of the circuit can afy this constraint

by specifying the set of applicable TF existing in the database.

With the selection of TF's, the applicable promoters and coding sequee genes are
also implicitly specied. The design space only includes the promoter$idt can be
regulated by one of the selected TF's and coding sequence gened tdan produce those
TF's.

Another level of constraints can be determined for the input anduput of the GRN.
Our assumption here is that a circuit is designed for a speci c applican. Therefore,
speci ¢ types of TF's can control the design. In addition to the inpts, outputs of a
circuit need to be speci ed based on the application. By specifying ¢hTF's related to
the inputs and outputs of the circuit, we establish what a device casense and how it

reacts to the external stimulus.

4.3.2 Selection of Orthogonal features

For a genetic circuit to function accurately, all of the regulatory elations among its
elements need to be mutually exclusive (orthogonal). We separaigpes of relations into
two main categories. The rst category is the activation regulationwhich is between
TF's and promoters. A TF can induce or repress di erent promotes. Also, a promoter

can be induced or repressed by dierent TF's. As a result some ofd@hpromoters are
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not independent or in other words they are not orthogonal. The ber main category
of relations are production of TF's by coding sequences. Di erenbding sequences can
produce the same TF's.

Each of these two categories can be represented in a two dimenalomatrix which
we process for nding the orthogonal subset. An example of anta@tion regulation
matrix is demonstrated in Table 4.1 . The vertical axes of matrix arelte promoters and
the horizontal axes are the TF's. The cells are equal to 1 if an actitian relation exists
among the promoter and the TF. The TF columns are ordered fromfieto right based
on their necessity for circuit implementation. Hence, if a TF is assigdefor an input
then it should be in a column further left. In addition to ordering basd on necessity,
the TF's which have a lower number of relations are located in the moteft columns,
because they have less cross-talk.

Assume we have a set of four TF's and six promoters. The activatiaregulation
matrix of these TF's and promoters is demonstrated in Table 4.1. Th¥ and Y TF's
are assigned to input ports of the circuit. Notice that here we do maconsider the
running example circuit of Chapter 4. For sake of simplicity, we conséd a design that
can be implemented using three TF's and has two inputs.

In the rst stage of the algorithm, Prom2 is selected for TFx. As aesult, the column
of TFx is removed for the next stage. Moreover, all of the columnghich have 1 in the
row of Prom2 need to be removed. Hence, the column related to Thy completely
inactivated. Table 4.2(a) shows the initial matrix with selection of Pron2 for TFx in
pink color and the a ected cells in light gray and dark gray colors. Whea TF and a
promoter are paired, the row and column related to them are collapd and a reduced
table is generated. The collapsed row and column is shown in light graglar. Also
selection of Prom2 restricts the use of TFy, since TFy also have rétan with the Prom2.

As a result, we need to inactivate all of the relations in the TFy columiishown in dark
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Table 4.1: Activation regulation table for promoters and TF's. The
vertical axes of matrix are the promoters and the horizontal aseshow
TF's. The cells are equal to 1 if an activation relation exists among the
promoter and the TF.

TFEx TRy TFz TFm
Proml 0 0 0 1
Prom2 1 1 0 1
Prom3 0 1 1 0
Prom4 0 1 0 0
Prom5 1 0 1 0
Prom6 0 1 1 1

gray). Moreover, the promoters that are a ected by TFx (e.g. PPom5) needs to be
inactivated. After applying these changes Table 4.2(b) is created.

As can be seen in Table 4.2(b), we do not have any available promot&yde selected
for TFy after selection of Prom2. Since TFy is one of the assigned Bor the inputs
of our circuit, the algorithm needs to back track to try another pomoter selection for
TFx. Hence, the pair of TFx and Prom5 is selected in the next stagd.he a ected row,
column and cells are shown in Table 4.3(a). Moreover, the Itered tdb after selection
of Prom5 for TFx is demonstrated in Table 4.3 (b).

In the next stage, the algorithm pairs TFy with Prom3. The result ofselection and
the Itered table is shown in Tables 4.4 (a) and (b). Prom5 and Prom3r& added to
the list of orthogonal promoters at the conclusion of this selection

Given the Table 4.4(b), the algorithm cannot nd any promoter for TFz. However,
this TF is not assigned to any input port; consequently, there is noldigation to have
TFz available. Since we are still looking for one more TF-promoter paifremember

the circuit requires three TFs for implementation), algorithm remoes the column TFz
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Table 4.2: The activation regulation table and changes that needs to be
applied after selection of Prom2 for Tfx (the pink cell in (a)). The ligh
gray row and column are removed for creation of the new table. Thoells
in dark gray are also inactivated in the new table. (b) shows the table
after applying required changes. Since TFy does not have any avaia
promoter for selection while it is a required TF, the algorithm traces &ck
to selection of another promoter for TFx.

(@)

TFx TRy TFz TFm (b)
TFy TFz TFm
Prom1 0 0 0 1
Prom1 0 0 X
Prom2 1 1 0 1
Prom3 1
Prom3 0 1 1 0
Prom4 X 0 0
Prom4 0 1 0 0
Prom5 0 X 0
Prom5 1 0 1 0
Prom6 X 1 X
Prom6 0 1 1 1

from table (Table 4.5(a)) and creates the new Table 4.5(b). From tb new table, the
algorithm selects Prom1 for TFm and adds it to the orthogonal prowoters set. At
the end of this stage we have a su cient number of promoters andlgorithm returns
fProml, Prom3, Prom&y as orthogonal promoters.

The same algorithm runs on the gene production regulation matrix. i@y TF's that
have orthogonal promoters regulated are checked in the prodion regulation table. In
this matrix (table) on the vertical axes are genes and on the horiatal axes are TF's.
The TF's in this table are ordered based on the assignment to outpgitthe assignment
to inputs, and the number of regulatory genes related to them. Thoutput of this run
Is a set of orthogonal genes and the TF's which they are producing.

By taking the intersection of the two output orthogonal sets of he (gene, TF) and
(TF, promoter), we have a set of paired orthogonal (gene, praster). Using this new

set we can assign appropriate features to the primitives of type ading sequence” and
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Table 4.3: The activation regulation table and changes applied after
selection of Prom5 for Tfx (the pink cell in (a)). The light gray row aml
column are removed for creation of the new table. The cells in darkayr
are also inactivated in the new table. (b) shows the table after apghg
required changes.

(@)

TFx TRy TFz TFm (b)

TFy TFz TFm

Prom1 0 0 0 1
Proml 0 0 1

Prom2 1 1 0 1
Prom2 X 0 X

Prom3 0 1 1 0
Prom3 1 X 0

Prom4 0 1 0 0
Prom4 1 0 0

Prom5 1 0 1 0
Prom6 1 X 1

Prom6 0 1 1 1

\promoters" when the former primitive has an induction/repressia relation with the
latter primitive.

The other primitive types such as terminator and RBS do not requiréo be checked
for orthogonality since they cannot have cross-talk. Based ondhtype of these primi-

tives, appropriate features are fetched from the database ugit€lotho.

4.3.3 Feature assignment

In this stage the DNA sequence for each primitive in a motif level DAG iassigned. The

order of assignment steps is:

1. Input promoters -  First, based on the assigned input TF's, the promoters con-
nected to the input ports are assigned to their related promoterétures in the
orthogonal set. In this level some of the promoter types may neobatch with the
selected orthogonal promoter. We discuss the solution for this gislem in the

section 4.3.4.
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Table 4.4: The activation regulation table and changes applied after
selection of Prom3 for Tfy (the pink cell in (a)). The light gray row aml
column are removed for creation of the new table. The cells in darkayr
are also inactivated in the new table. (b) shows the table after apghg
required changes.

(@)

TFy TFz TFm (b)

TFz TFm

Proml 0 0 1
Proml 0 1

Prom2 X 0 X
Prom2 0 0

Prom3 1 X 0
Prom4 0 0

Prom4 1 0 0
Prom6 X X

Prom6 1 X 1

. Internal promoters -  After assigning the input promoters, the internal pro-

moters are assigned. For these promoters, since a gene (codigusnce) either
represses or induces the promoter's activity, we make the featuassignment based

on the orthogonal (gene, promoter) set created in the previostage.

. Internal coding sequences - Next, based on the internal promoter assignment,
the coding sequences related to promoters are assigned. Heffioegeach coding
sequence in the motif level DAG, the regulated promoter which folleat is fetched.

Then, the paired feature is fetched from the orthogonal (genpromoter) set.

. Output coding sequences - As discussed previously, for each output of the cir-
cuit a TF is assigned by the designer. Based on the output TF the cod) sequence
that can produce it is fetched from the orthogonal (gene, TF) sgenerated in the

previous stage.

. Ribosomal binding sites - In the current implementation of Cello, we set the

same feature for all of the RBS's in a circuit. However, in our syntlses process,
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Table 4.5: The activation regulation table and change applied after se-
lection of Prom1 for Tfm (the pink cell in (b)). The light gray column
is removed for creation of the new table since not any promoter cdre
selected for TFz. After this stage algorithm returnsf Prom1, Prom3,
Promb5g set as orthogonal promoters.

(a) (b)

TFz TFm TFm
Proml 0 1 Proml 1
Prom2 0 0 Prom2 0
Prom4 0 0 Prom4 0
Prom6 X X Prom6 X

an optimization approach based on the RBS calculator designed byetivoigt Lab
and the Salis Lab (Salis et al., 2009) is proposed. More details aboutdiproposal

is explained in section 4.3.4.

6. Terminators - All terminators are also assigned to the same feature which is

fetched from the database.

Due to the limits in the number of available biological parts, some of thprimitives
may remain unassigned in more complex circuits. The assignment pess is not stopped
due to lack of resources unless no features can be found for inputan output of the
circuit. For instance, after execution of the Assignment stage dhe running example of
Chapter 4, the graph of Figure 412 is generated. The name of the nodes demonstrate
the assigned feature's name. The highlighted nodes are unassignedes for which the
label is the type of the primitive. Graph (a) is the assigned version dghe optimized
mapped input graph utilizing two input NOR (Figure 410 (b)). In this graph (a),
eight unassigned nodes can be seen. However, using the three tiHgOR motif for

mapping and optimizing the motif level DAG, the assigned version hasxsunassigned
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nodes shown in Figure 42(b). Therefore, using three input NOR results in fewer nodes

and consequently a higher assignment success percentage.

(a) (b)

Figure 4 12: Outputs of the Assignment stage on two di erent mappings.
(a) shows the assigned nodes for 2 input NOR mapped DAG. The same
input DAG after mapping to three input NOR and assignment is shown
in (b). The highlighted nodes demonstrate the unassigned nodes iahn
are labeled by their primitive types. The number of unassigned primitas

in DAG (b) is lower than DAG (a).
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4.3.4 Part level optimization

We named this optimization stage \part level optimization" since the ptimization is
done either during the assignment of the motifs or on the assigneadtifs. In the current
version of the tool, only one of the following proposed methods is implented.

By assigning TF's for input ports, after running the orthogonal skection of features
stage, a promoter feature is assigned to the promoter primitive moected to that port.
However, in some cases the type of the regulation of the primitive é® not match
with the selected feature's type. For instance, in Figure 41 (b) (page 34 )port B is
connected to a repressible promoter which is shown by a green circi®n the other
hand, the TF selected for this port is Arabinose which induces the Ri8l promoter.
As a result, we cannot assign PBad to the \rpromoter” primitive. Inthe part level
optimization stage, a bu er is added in front of the repressible prooter converting the
inducer input TF Arabinose to a represser (Figure 43 (a) blue square). However, due
to an insu cient number of repressor coding sequences and regstble promoter pairs
this bu er cannot be assigned completely. Since the other promateonnected to B is
an inducible promoter no bu ers need to be added for conversion.

The other case of unmatched promoters is when the selected paier can be re-
pressed by the input TF and the primitive type is an inducible promoter In this case
the optimizer algorithm adds an inverter motif (repressible promote+ RBS + cod-
ing sequence + terminator) and also substitutes the inducible pronter motif with a
promoter that can be repressed by the coding sequence of thedrter. For instance,
assume for the example in Figure 41 for port B TF Tetracycline is selected. For this
TF, the orthogonal feature selection algorithm returns pTet regessible promoter. In
this case, port B cannot be connected to \ipromoter" primitive. Figire 413 (b) shows

the substituted inverter and repressible promoter in the violet sare.
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(@) (b)

Figure 4 13: Part level optimization on the assignment of primitives.
In the DAG (a) the bu er motif and in the DAG (b) the inverter and
repressible promoter motifs are added for matching the input TF wit
the related promoter.

Another important issue in the genetic circuit synthesis is the variaiprotein pro-
duction levels among the elements of circuit. Depending on many dient factors, the
protein production rate of a circuit can be changed. As a result, vém an interconnec-
tion is made between two circuits, it is important that the input and ouput signals of
the two can be matched. In (Yaman et al., 2011), an automation algthm for match-
ing these input and output signals of GRN elements based on their mhoction rates is

proposed.
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Our proposal for optimization of the synthesized GRN is to tune thé&kibosomal
Binding Sites (RBS). Consider a circuit with two tandem genetic gategl and g2, in
which gl's output is connected tog2's input. We propose that using the RBS calculator
proposed in (Salis et al., 2009) either the output protein productionate of g1 can be
tuned to match the required input rate ofg2 or vice versa. Currently, we use a generic

RBS. This tuning process is proposed in the future work section.

4.3.5 Packaging of output

The assignment stage is completed by preparation of the output dfe synthesis ow.
The output of Cello is a set of composite parts which includes the par(implicitly nu-
cleotide sequences) required for implementation of the GRN. In thessignment stage,
rst, a feature from the database of Clotho is assigned to each ipritive of the mo-
tifs inside AGRN. After completion of the orthogonal feature seléion and part level
optimization stages, the biological parts related to each assigneeature require to be
fetched from the database.

After the parts are queried from the database, these parts apmackaged into com-
posite parts based on the covering partitions. The primitives relateto a mapped motif
have same covering partition. However, inside a motif not all of therimitives (parts)
are required to be physically connected (i.e. have attached seques). These type of
primitives are "transparently connected”. In order to be able to @tinguish such trans-
parent connections, the related edges inside a DAG can be labeledieA packaging is
done, a set of composite parts are generated which is the outpdttbe synthesis process

(Cello).
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4.4 Post-synthesis assembly preparation

In order to have a complete ow from the high level description of aenetic circuit to
its implementation in the biological laboratory, two post-synthesistages are required
to be performed. These post-synthesis stages are proposediPAR group at Boston
University.

The rst stage is the preparation of the output composite part sguence for assembly.
The assembly of parts requires a speci ¢ plan, which shows the sesgof the assembly
process and the parts that can be assembled in each stage. Theseksbly manager
in an App in Clotho which provides a plan for creation of the compositegnts. The
applied approach in this tool is based on (Densmore et al., 2010). TAssembly Manager
generates an assembly graph which is converted to a protocolginédbased on the selected
implementation protocol.

After protocol graph is generated, the Puppeteer language isads (Vasilev et al.,
2011). The rst stage requires existing samples to be fetched fnoa database and a
protocol library, an instruction code is generated for a liquid handlig robot. In order
to generate instructions which are compatible with the robot, theettings of the robot
is also parsed by the code generator.

The nal stage of the automation is performed by a tool named Pyget Show (Vasilev
et al., 2011). Puppet Show parses the robot code generated by thuppeteer and sends

out the required instructions to the liquid handling robot to execute
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Chapter 5

Experimental Result

5.1 Biological Experiments

Our synthesis ow proposes a methodology to design a genetic cittcusing a high level
language. The input of the ow is a genetic circuit description and theoutput is a
DNA sequence. To verify the validation os the proposed ow, we nédo show that
the implementation of the output DNA sequence in the laboratory enronment has
behavior compatible with the input model.

The limited number of biological parts available for assembly in the labatory pro-
hibits the implementation of complex circuits. Thus, the experimentatesting is per-
formed on a simple three input, one output circuit. Figure 9 shows the Verilog de-
scription, the correlated truth table, and the boolean gate levelckematic of the test
circuit. Based on the library of available parts, the generated GRNamnot be completely
assigned without running the motif level optimization algorithm (Figue 51 top GRN).
However, after removing the bu er (annotated by orange dasldelines) the optimized
GRN can be completely assigned (Figure 5 bottom GRN).

Table 5.1 lists the parts utilized for implementing the test GRN. As estalished by
Cello, these parts are biologically orthogonal. The Biobrick assemblygtocol (Knight,
2003) is selected for implementation of the test GRN in the laboratgr This protocol is
a binary assembly process; in other words, at each stage of thi®pess only two parts

(or composite parts) can be combined. All of the parts in Table 5.1 arcompatible with
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Figure 5 1: The Verilog description, truth table and the schematic of the
selected circuit for experimental experiments illustrated in this gue. The
resultant GRN by Cello is drawn and the assigned parts' names are als
labeled. As illustrated, the unoptimized circuit cannot be fully assigre
because of the limit in the number of available parts in the biological
laboratory. However, after running the optimization and removingthe
bu er, the new circuit is feasible for implementation.

the required format (RFC10 format).

Based on the protocol's requirements, an assembly plan is created the test GRN,
which is illustrated in Figure 52. Each level in the tree shows a stage of assembly.
The leaves are BioBrick parts and the root is the nal GRN which can & transformed
into Escherichia coli (E.coli) competent cells. The test GRN consists three composite
parts, illustrated in three di erent colors: light green, light blue andpurple in Figure 52.

A previously assembled composite part,underlined in orange, is redder this circuit.

The current state of the assembly is annotated with green and blstars.
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Table 5.1: List of the parts utilized for implementing the GRN for Figure
51. All of the parts are compatible with BioBrick assembly protocol.
Moreover, gene and promoter parts are orthogonal.

Part Number | Family Description

BBa_10500 Promoter | pBad - Inducuble by Arabionose
BBa_R0065 Promoter | pCl - Repressible by CI
BBa_K091112| Promoter | pLac - Respressible by Lac
BBa_K091146| Promoter | pLas - Inducible by Las+AHL
BBa_R0040 Promoter | pTet - Indcuible by aTc
BBa_C0051 Gene Cl - Repressor gene
BBa_C0012 Gene Lacl - Repressor gene
BBa_C0078 Gene Lasl - Activator gen

BBa_E1010 Gene Red Flourscent Protein - Reporter Gene
BBa_B0015 Terminator | double terminator

BBa_B0034 RBS

5.2 Computational Analysis

A software tool running the proposed synthesis ow, named Cellas implemented as a

Clotho App. Clotho is a tool suite designed for managing synthetic dimgy data. Clotho

also provides design tools for engineering synthetic biological syate In this section,

we analyze our proposed ow and the related algorithms for two dient examples.

To provide a clear and understandable analysis, we use a simple cirowith three

inputs and a single output. This example is used for demonstrating ¢e ects of di erent

algorithms in the ow. The Verilog description, as well as the boolean tpc based

schematic of the circuit, are shown in Figure 8. As illustrated, this circuit is described

using a boolean expression consisting of two NOR and one invertereogtions.

Cello provides the options for running the ow using di erent optimizaions or li-
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Figure 5 2: Assembly plan for implementation of the test GRN is de-
signed based on the BioBrick assembly protocol. A previously assdet
section of the GRN, underlined in orange, is reused for this circuit. Hg

current state of the assembly is annotated by green and blue ssar

brary elements. The rst optional algorithm is the technology trarsformation to NOR
(Chapter 4.1.2). Since the motifs available in the database of Cello aa# NOR and INV
based, the technology mapping step is currently mandatory. Hower, if other future
motifs for di erent operations are de ned in the database, this sige can be optional.

The three main options that we considered in this analysis begins witlate level opti-
mization (Chapter 4.1.3). In this step, the removal of double inveers can be optionally
performed and the selection may impact the nal output circuit. The following selection
is for the genetic motif selection step (Chapter 4.2.1), which e ecthe technology map-
ping (Chapter 4.2.2). In this step, two di erent motif packages carbe selected. The rst
package includes a two input NOR and inverter motifs (NOR2/INV). The second pack-
age choice adds a three input NOR motif to the previous package (FR3/NOR2/INV).
Another option is motif level optimization (Chapter 4.2.3). If this ste is performed,
the bu er motifs are removed from the design.

It is required to state that, in this analysis, we assumed Cello is concted to a
Clotho library which includes four Repressible promoters, four Repssor genes, four
Inducible promoters, and one reporter gene. We also assumed dllitliese parts are

orthogonal. The number of orthogonal parts in the library has a dect in uence on the
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(a)Example ex-A (b)Example ex-A'

Figure 5 3: The Verilog code, truth table and structure schematic of
running examples of computational analysis. (a) shows ex-A with tee
inputs and a single output. (b) illustrates the equivalent boolean egion
described di erently in Verilog. The transformed structure of theinput
expression is also shown which consists one more NOR gate (the gree
schematic).

size of an implementable circuit.Unlike other primitive parts, RBS and teninators do
not have an orthogonality constraint. These parts (RBS and termator) may e ect the

reliability of the GRN, in general, and the protein expression rate, ingrticular. The

promoters and genes are the actual limiting factors for designing@RN, since they are
required to be orthogonal and may impact each other. As a result the tables below,
the number of inducible/repressible promoters and genes are refsal for each output
circuit.

Since there are three di erent optional steps, each with two chaes, Cello can gen-
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erate eight di erent results based on the di erent choices. Table.3 reports the statics
for number of motifs and primitives forming the generated outputgor ex-A applying
di erent optimization steps and mapping criteria. Sinceex-A is completely described
using NOR and INV operations and does not have any double invertethe gate level
optimization (GOPT) does not impact the nal output. The modeled drcuit consists of
three boolean NOR and INV operators. As a result, by mapping theedign using the set
of NOR2/INV, the average number of primitives per gate without opmization is equal
to seven. However, the description can be mapped to a single thiaput NOR, which
results in a lower value of primitives per boolean operator (three t@@ir primitives per
gate). Furthermore, it can be seen that by performing motif levedptimization (MOPT)
the nal output mapped by NOR2/INV set can be completely assigneé (row 5).

In order to show the e ect of Verilog description on the result of sythesis process,
we analyzed the boolean equivalent a#fx-A which is shown in Figure 53(b). As it is
illustrated, the generated netlist ofex-A' includes three AND gates and four invert-
ers. After transforming the AND operators to NOR, the new netlishas 10 inverters
and three NOR's. Exampleex-A"' also shows the e ect of optimization and mapping
steps more clearly. Table 5.3 illustrates the generated outputs fex-A' applying dif-
ferent optimization steps and mapping criteria. After transforméon to NOR, the new
structure has 4 double inverters removable by running gate leveptimization (GOPT).
However, even after applying GOPT the structure cannot be congtely assigned by
mapping to NOR2/INV set. Based on the available parts in the connéed library, this
design can only assigned completely when GOPT and motif level optimiican (MOPT)

is performed and the selected mapping set is NOR3/NOR2/INV.



Table 5.2: The statics for motifs and primitives forming the generated outpwg for ex-A applying
di erent optimization steps and mapping criteria. Sinceex-A is completely described using NOR and
INV operations and does not have any double inverter, the gate kevoptimization (GOPT) does not
imply any e ect on the nal output. However, the description can ke mapped to a single three input
NOR, which results in a lower value of primitives per boolean operatoMoreover, it can be seen that
by performing motif level optimization (MOPT) the nal output mapp ed by NOR2/INV set can be
completely assigned.

Options Motif Level Statistics Primitive Level Statistics
Output GOPT | NOR2| NOR3| MOPT | Gates | NOR2's | NOR3's | INV's | IProm | RProm | Genes| Primitives Completely
INV NOR2 /Gate Assigned
INV
1 X 3 2 0 1 4 3 5 7 No
2 X X 3 2 0 1 4 3 5 7 No
3 X 3 0 1 0 3 1 2 3-4 Yes
4 X X 3 0 1 0 3 1 2 3-4 Yes
5 X X 3 2 0 1 3 3 4 6 Yes
6 X X X 3 2 0 1 3 3 4 6 Yes
7 X X 3 0 1 0 3 1 2 3-4 Yes
8 X X X 3 0 1 0 3 1 2 3-4 Yes

€S



Table 5.3: The statics for motifs and primitives forming the generated outpwg for ex-A' applying
di erent optimization steps and mapping criteria. The created netlis for input Verilog description of
ex-A' includes three AND and four INV is operators. After transformabn to NOR, the new structure
has 4 double inverters which are removed by running gate level optaation (GOPt). However, even
after applying GOPT the structure cannot be completely assignedylmapping to NOR2/INV set. Based
on the available parts in the connected library, this design is assignedmpletely only when GOPT and
motif level optimization is performed and the mapping set is NOR3/NOR/INV.

Options Motif Level Statistics Primitive Level Statistics
Output GOPT | NOR2| NOR3| MOPT | Gates | NOR2's | NOR3's | INV's | IProm | RProm | Genes| Primitives Completely
INV NOR2 /Gate Assigned
INV
1 X 13 3 0 10 6 13 16 5-6 No
2 X X 5 3 0 2 6 5 8 7 No
3 X 13 1 1 9 9 11 17 5-6 No
4 X X 5 1 1 1 5 3 5 4-5 No
5 X X 13 3 0 10 4 13 14 4-5 No
6 X X X 5 3 0 2 4 5 6 5-6 No
7 X X 13 1 1 9 4 11 12 7 No
8 X X X 5 1 1 1 4 3 4 3-4 Yes

2]
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By comparing statistics reported in Tables 5.2 foex-A and table 5.3 forex-A', it
can be concluded that the primary input description may e ect the gnthesized output
GRN. Out of eight di erent synthesized network forex-A, six can be completely assigned
and implemented using the available set of parts. On the other hanéyr the boolean
equivalent ofex-A, which is ex-A", only one generated output circuit can be completely
assigned using the equal number of parts.

Based on these results, the importance of having design spacelergiion for the
input description can be concluded. By investigating di erent equiv@nt implementa-
tions for an input description, the best feasible solution can be geaged. The electronic
design automation researchers have investigated this subject fectronic circuit syn-
thesis. As part of the future work for this project, elaborated dsign space exploration
algorithms can be added to the synthesis ow to improve the perct&ge of feasible
output genetic circuits for a given logic circuit description.

Furthermore, the results forex-A"' reported in Table 5.3 shows that only one out
of eight di erent synthesized genetic circuits can be completely agaed with available
parts in the correspondent library. This ratio points out the e ect of optimization
algorithms on shrinking the size of a circuit from 67 to 29 primitive. In ddition to the
optimization algorithms, the availability of di erent type of motifs with high coverage
such as NORS3 has a direct e ect on the decrement of the circuit size

The ratio of primitives per gate is calculated for results of both exaptes. Based on
Table 5.3, it could be assumed that the circuits having a ratio lower thafour primitives
per gate can be completely assigned. However, this assumption isdasince Table 5.2
shows that for a ratio of six primitives per gate the outputs numberve and six are
feasible. Therefore, the rate of primitives per gate is not determative for feasibility

and complete assignment of the circuit.
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Chapter 6

Conclusion

Design automation tools are in demand for synthetic biology in ordemtincrease the
pace of investigations and developments in this eld. In this projectwe consider the
approach of applying the methodologies used for electronic desigutanation (EDA)
to biological design automation (BDA). For certain, while the genelaconcepts in EDA
can be mapped to BDA, major modi cations are also required.

In this thesis | explained an automation ow which interprets a desigmlescription in
a high level language and generates the required DNA sequencdlierimplementation of
the modeled behavior. In this automation methodology, | break dawthe synthesis ow
to three stages: Compilation, Mapping and Assignment. While the forer two stages are
analogous to logic circuit synthesis stages (however, modi catioase required based on
biological constraints), the latter stage completely deals with theequirements of GRN
design.

The analytical results for the proposed synthesis ow are discuss in Chapter 5.2.
These results report the impact of this BDA ow on increasing the fasibility of a circuit
for a given description. For instance, in one of the studied examplesly one out of
eight di erent resultant GRN's can be implemented using the available gats, which
shows that optimizations are needed to nd small sets of feasiblesigns in large design
spaces.

Moreover, the computational analysis reveals that the output atis proposed ow

is dependent to the input description. The comparison made betwedéwo functionally
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equivalent circuits with various input descriptions shows that the peentage of com-
pletely assignable outputs in equal conditions are di erent for eactlesign. While one
design has 75% feasible design points, the other design has only 1X&dsible designs.
Hence, design space exploration is mandatory in order to nd the besolution for any
input description. This problem has been investigated by EDA resegrers and can be
contributed to HLL based BDA approaches.

A software tool has been developed based on the proposed sgsth ow, named
Cello. As an extension app for Clotho tool suite, Cello has access towstom data model
based on synthetic biology's requirements. The implemented compseand algorithms in
addition to the connection to biological libraries enable Cello to run theow thoroughly
starting from a Verilog description and to generate the required GR. Cello is an open
source application and it can be accessed and downloaded framw.clothocad.org .

In order to verify the synthesis ow, the physical implementation ban experimental
GRN generated by Cello has begun in the laboratory environment. Bhmain target in
the biological experiments is to implement various Cello generated @it circuits for
the examined description, test the functionality, and investigatette reliability of each

output.

6.1 Future work

One of the most immediate future directions for this project is to caplete the im-
plementation of the test design in the biological laboratory. By nising the physical
implementation of the test GRN and transforming the DNA to competnt cells, a FACS
machine can characterize the circuit for each of the eight di erenpermutations. We
can then distinguish the performance. Moreover, as discusseeyiously, other possible
GRN's for the same description can be tested to compare the reliabjliof designs. More-

over, by increasing the number of available genetic parts, designghwhigher complexity
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can be generated by Cello and examined in the biological laboratory.

Elaboration of compilation and extending it by automated design spacexploration
methodologies are of high priority for a truly powerful synthesis w. The current com-
piler does not support many of the available features of Verilog (fexample behavioral
design description and sequential circuit description among othgrdMoreover, the gate
level optimization algorithms can also be customized based on genaticcuit design
speci cations.

The current version of Cello designed circuits are based on threeagable motifs of
NOR2, NOR3 and INV. However, the synthesis ow can be strengéned by introducing
libraries of di erent type of motifs similar to the EDA synthesis tools. In addition to
designing new motifs, investigating e ciency criteria for making comprison among
di erent motifs is required.

The motif level optimization step is another potential stage to modyf for improving
the synthesis results. In the current version, only bu ers are raoved as far as the motif
level optimization is concerned. However, nding repeated pathsxd removing tandem
repressions are two sample extensions for motif level optimization.

Augmenting the reliability of synthesis ow outputs can be another dcus of future
work. Approaches such as signal matching and RBS tuning can be @stigated more
thoroughly. Furthermore, the resultant circuits of the synthes can be functionally

veri ed using existing formal languages and veri cation algorithms.



Appendix A

Cello compatible Verilog

A design in Verilog can be described using behavioral or structuralagements. The
structural statements are either the instantiation of other modles or the continuous
assignment of boolean expressions to ports. The current versiohCello only compiles
structural Verilog descriptions made with continuous assignmentatement. Registers
and wires are not acceptable in the compiler currently. All of the bing logical operators
(&, j and ) can be used for the input Verilog description of Cello. Multi-bit vecto
input/output ports will be interpreted as single-bit ports.

Considering these limitations any boolean expression can be written time Verilog
le and there is no limit in the number of expression levels. Two-level logis also
available and an expression can be written either in Sum-of-Product Product-of-Sum

format.
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