
'

&

$

%

APPLYING HARDWARE DESCRIPTION

LANGUAGES TO GENETIC CIRCUIT DESIGN

ROZA GHAMARI

Thesis submitted in partial ful�llment

of the requirements for the degree of

Master of Science

BOSTON

UNIVERSITY

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Thesis

APPLYING HARDWARE DESCRIPTION LANGUAGES

TO GENETIC CIRCUIT DESIGN

by

ROZA GHAMARI

B.S., Razi University, 2008

Submitted in partial ful�llment of the

requirements for the degree of

Master of Science

2011

Approved by

First Reader

Douglas M. Densmore, PhD
Assistant Professor of Electrical and Computer Engineering

Second Reader

Ayse Coskun, PhD
Assistant Professor of Electrical and Computer Engineering

Third Reader

James J. Collins, PhD
University Professor
Professor of Biomedical Engineering

The wise learn from the experience of others, and the creative know how to
make a crumb of experience go a long way.
Eric Ho�er

Acknowledgments

Writing a Masters Thesis, like any major research, is collaboration, and I am grateful

to many people for helping me throughout this ordeal.

Foremost, I would like to express my sincere gratitude to my advisorProfessor Dou-

glas Densmore. For his continues support of my research, for his immense knowledge,

patience, and humor. His passion and interest in the area was contagious and motivated

me to excel and explore the subject area even further. He has taught me how to be

a better researcher, and how to apply my knowledge in other disciplines for Synthetic

Biology. It has been an honor to have him as my advisor.

I would also like to thank my fellow lab mates at CIDAR. Dr. Swapnil Bhatia would

often take time from his busy schedule to teach me new concepts and ways of looking

at the problem. The assistance of Dr. Traci Haddock and Anna Tassinari was also

instrumental for implementing the circuits and running the experiments in the biological

laboratory. Both of those individuals went above and beyond what they were supposed

to do, and I feel blessed to have worked with such a supportive group of researchers.

Professor Christopher Voigt, Dr. Brynne Stanton, and Alec Nielson from MIT were

always available to help and brought in new perspectives in the collaborative nature of

this work.

I would also like to thanks Dr. Todd Peterson and Dr. Kevin Clancy at Life Tech-

nologies for their support of this project.

Last but not the least, I would like to thank my parents, and my younger brother.

Nothing in my life would be possible without their love and strong support.

iv

APPLYING HARDWARE DESCRIPTION LANGUAGES

TO GENETIC CIRCUIT DESIGN

ROZA GHAMARI

ABSTRACT

Synthetic biology has recently gained attention for its focus on forward engineering

new biological systems. In particular, many researchers have investigated how to as-

semble genetic regulatory networks; these networks are a collection of elements enabling

DNA transcription (promoters) and translation (genes). If one views transcriptional sig-

nals and translational products as either present (1) or absent (0) then analogies can be

made between certain genetic regulatory networks and digital electronic logic circuits.

Consequently, by applying existing approaches in electronic circuit design to genetic

circuits, the complexity, reliability, and robustness of genetic regulatory networks will

greatly increase.

In this work, we propose a methodology and a software frameworkfor applying

various electronic digital circuit design methodologies to genetic regulatory networks.

The study of electronic circuit design has matured in many areas; hence, the algorithms

and approaches utilized for silicon based circuits are highly optimized and understood.

We focus on Verilog, a commonly used hardware description language(HDL) for the

design of complex electronic systems. Although Verilog supports implementing di�erent

types of designs such as analog, mix-mode and digital sequential circuits, we chose digital

combinational circuits which form the basis of the other types of circuits. Furthermore,

by supporting combinational genetic circuits in Verilog, other researches can elaborate

on our approach to design other circuits types and families.

The main contribution of this thesis is a software tool named Cello (Cell Logic). By

implementing \Compilation", \Mapping" and \Assignment" stages in Cello, we provide

v

a complete design ow for genetic regulatory networks from speci�cation to �nal DNA

sequence. Moreover, for each stage in Cello's synthesis process an optimization algo-

rithm is implemented. In general, the goal of the optimization algorithms is to decrease

the complexity of design and increase the reliability of the �nal genetic regulatory net-

work. We demonstrate the feasibility of the proposed algorithms and methods as well

as beginning the process of experimentally validating the results.

vi

Contents

1 Introduction 1

2 Background 5

2.1 A brief history . 5

2.2 Clotho data model . 9

2.3 High level languages for synthetic biology11

2.4 Compilation and synthesis tools for synthetic biology 12

3 Overview 14

4 Design Process 18

4.1 Compilation . 19

4.1.1 Compilation and DAG generation 20

4.1.2 Technology Transformation . 21

4.1.3 Gate Level Optimization . 23

4.2 Mapping . 26

4.2.1 Genetic motif selection . 27

4.2.2 Technology mapping . 28

4.2.3 Motif level optimization . 32

4.3 Assignment . 33

4.3.1 Constraints determination . 35

4.3.2 Selection of Orthogonal features 35

4.3.3 Feature assignment . 39

vii

4.3.4 Part level optimization . 43

4.3.5 Packaging of output . 45

4.4 Post-synthesis assembly preparation 46

5 Experimental Result 47

5.1 Biological Experiments . 47

5.2 Computational Analysis . 49

6 Conclusion 56

6.1 Future work . 57

A Cello compatible Verilog 59

References 60

Curriculum Vitae 64

viii

List of Figures

1�1 High level design ow . 4

2�1 Stages of the central dogma . 7

2�2 Examples of genetic regulatory networks 8

2�3 Partial view of the Clotho data model . 10

3�1 Stages of genetic circuits synthesis process ow 17

4�1 The ccVerilog code for running example of Chapter 419

4�2 The ine�ciency of the Verilog AST. 20

4�3 DAG data structure pseudo code . 21

4�4 Generated DAG from AST . 22

4�5 The equivalent NOT/NOR based subgraphs for OR and AND boolean

operations . 23

4�6 DAGs generated during Compilation stage 25

4�7 Di�erent schematics of a NOR motif . 27

4�8 Motifs of Inverter and three input NOR motifs 29

4�9 The boolean equivalent for three input NOR 30

4�10 The motif level DAG's generated after mapping 31

4�11 Example of motif level DAG before and after optimization 34

4�12 Outputs of the Assignment stage on two di�erent mappings. 42

4�13 Part level optimization on the assignment of primitives 44

5�1 The running example for biological experiments 48

ix

5�2 Assembly plan for test GRN. 50

5�3 Computational analysis examples . 51

x

List of Abbreviations

AGRN Abstract Genetic Regulatory Network
AST Abstract Syntax Tree
BDA Biological Design Automation
CAD Computer-Aided Design
ccVerilog Cello Compatible Verilog
DAG Directed Acyclic Graph
DAsG Directed Acyclic subGraph
EDA Electronic Design Automation
GRN Genetic Regulatory Network
HDL Hardware Description Language
HLL High Level Language
INV Inverter
NOR2 Two input NOR
NOR3 Three input NOR
TF Transcription Factor

xi

1

Chapter 1

Introduction

In the recent years, synthetic biology has gained the attention ofmany researchers in

various disciplines. The goals of this �eld are to design and constructnovel biological

systems. Often, this requires creating new biological parts, devices and circuits based

on speci�c applications. The main four category of the applications of this �eld are:

biotherapeutics, bioremediation, bio materials and bio sensing. Reuse of constructs is

another target in the scope of synthetic biology (Baker et al., 2006). Ideas such as

abstraction, standardization and modularity are key elements of synthetic biology.

Synthetic biology truly is the intersection of three di�erent �elds, Biology, Chemistry

and Engineering, where researchersengineerdevices considering thechemical reactions

of biological elements (Endy, 2005).

In system biology, scientists study the complex interactions amongbiological systems

and are often concerned about modeling existing systems accurately. On the other

hand, synthetic biology focuses much more on forward engineeringof complex arti�cial

living systems to investigate natural biological phenomena and implement a variety of

applications.

In the �eld of synthetic biology, systems can be designed for various applications.

For instance in bio-therapeutic applications, researchers modifyEscherichia coli (E.

coli) bacteria's DNA for enabling it to seek out and destroy cancerous tumors (An-

derson et al., 2006). Another example of the synthetic biology's application is drug

synthesis, such as the antimalarial drug precursor engineered in yeast (Ro et al., 2006).

2

Moreover, synthetic biology supplies various bio materials, such as bio fuels made of

synthetic controls generating gas from sugar (which is the most inexpensive material)

(Keasling and Chou, 2008), (Dunlop et al., 2010). Sensing of biological materials, na-

ture compatible culture and biodegradability are some of the main advantages of the

synthetic biology products.

However, while this �eld can be positively e�ective for human being's life, the innova-

tions are indolently developed in comparison to other �elds such as electrical engineering.

Investigations show that, although the number of systems and devices designed in syn-

thetic biology grows during the last decade, the complexity of thesedesigns did not have

a considerable increase (Purnick and Weiss, 2009), (Chandran et al., 2011).

On the other hand, the increase in the complexity of the circuits in the �eld of

electrical engineering increases by an order of magnitude. Comparing the produced

electrical circuits of 20th century with the current circuits, shows us that in addition to

elaboration of technology, the tools for design automation are considerably improved.

About 40 years ago, the design of an electronic device was mostly performed manually,

while even imagination of not having the design automation tools in the current time is

impossible.

Genetic circuits are one of the main products of synthetic biology. Agenetic circuit

may be termed genetic regulatory network (GRN); a set of DNA segments with speci�c

functionalities indirectly interacting with each other. In a GRN, the gene expression

is regulated at various molecular levels, from transcription to post-translation, through

various feedback mechanisms (Myers, 2009), (Khalil and Collins, 2010).

Considering the fact that one of the important obstacles of genetic circuits elabo-

ration is the exponential increase of design complexity, it could be concluded that the

design automation tools can be a missing part in the world of syntheticbiology.

One of the main requirements of the automation is design encapsulation. Multiple

3

researches have been performed and categorized the abstraction levels into DNA, parts,

devices and systems (Baker et al., 2006). Some bio-design automation tools have been

considering these categorization in their data models (Marchisio andStelling, 2009) and

(Bilitchenko et al., 2011).

In addition to data models, tools for describing circuits and interpreting their models

are also required. Similar to electronic circuits, a genetic circuit can be modeled in a

schematic level, in which the pre-developed components are connected to each other

using a graphical user interface. The schematic level description also provides the de-

signer with designing hierarchical systems. Two examples of schematic based design

environments are TinkerCell by (Chandran et al., 2009) , (Chandran et al., 2010) and

Spectacle which is a part of Clotho tool suite by (Xia et al., 2011), (Densmore et al.,

2009). However, the ability to design complex systems using schematics is limited, since

the modeling is completely structural and includes high human interaction.

Hardware Description Languages (HDL) are utilized for electronic circuit design for

about �ve decades (Mermet, 1993). The main goal of these languages is to provide the

user with the ability to describe and model a circuit in an abstract level. High number

of automation tools are developed for interpreting these HDL's andsynthesizing the

actual circuit considering the design constraints. Verilog is one thewell-reputed HDL's

among Electronic Engineers (Thomas and Moorby, 1995).

In this thesis, a methodology is proposed to synthesize genetic circuits described in

Verilog. The functional description of the GRN is modeled using VerilogHDL and the

synthesis tool automates the design of GRN's. A high level illustration of the design

ow is shown in Figure 1�1. The goal of this work is to automate a design ow in which a

desired system is described in a high level language. This description represents a set of

interconnections among logic operators, being later transformedto an abstract genetic

regulatory network (AGRN). The resultant AGRN is converted to a DNA sequence

4

Figure 1 �1: High level illustration of the design ow. An idea is described
using a high level languages which constructs the structure of a circuit.
An abstract genetic regulatory network (AGRN) is generated from the
structure. Next, the AGRN is assigned to the parts stored in an accessible
database and the actual sequence is generated. The �nal stageis assembly
of sequences on biological lab and system experiment.

based on an accessible library of available synthetic genetic parts. Finally, the physical

system is implemented and experimented in the biological laboratory.

5

Chapter 2

Background

2.1 A brief history

The Central Dogma of molecular biology is the process of protein production from de-

oxyribonucleic acid (DNA): DNA replication, transcription and translation. The central

dogma illustrates that once a protein is produced it does not returnto the DNA en-

coding it. In the �rst stage of this process, DNA replicates itself. Transcription is the

second stage of the process during which mRNA (messenger ribonucleic acid) is created

from DNA by RNA polymerase. The last stage is the translation of RNAto protein.

In this stage the ribosome binds to RNA and translates the code of triple nucleotides

(codons) to amino acids according to the genetic code. Figure 2�1 shows the stages of

the central dogma and their inputs and outputs.

DNA is the long term storage molecule of biological information for theconstruction

and function of living organisms. DNA is a sequence of four basic chemical compounds

which are called bases: Adenine (A), Thymine (T), Guanine (G) and Cytosine (C).

The structure of DNA is a double helix. Due to the hydrogen bonds created between

bases, base A pairs with T with two hydrogen bonds between them and base G pairs

with C with three hydrogen bonds between them. This results in a stable double helix

of DNA where the bases in one strand are bound to their complements in the other

strand. Since DNA is made of double stranded pairing between the four bases, the

length measurement unit for DNA is \base pair" (bp).

6

The segments of the DNA sequence which are translated to proteinare called genes

(coding sequences). In addition to genes, multiple regulatory segments exist in DNA

controlling the transcription and translation stages. The segmentof DNA which triggers

the transcription of DNA to mRNA is called the promoter. The promoter controls the

attachment of RNA polymerase (an enzyme for RNA production) toa conserved site in

the DNA with a speci�c a�nity. The binding of RNA polymerase to the pr omoter region

can be inuenced by the presence or absence of speci�c transcription factors (TF). TF's

either repress or activate the promoter; the former reaction turns the transcription o�

and the latter reaction starts or induces the transcription. In addition to the promoter

which controls the start of transcription, a terminator sequenceis required to end the

transcription.

The third stage of protein biosynthesis is the translation of mRNA into amino acid

chains, which can form functional proteins. This process starts by the binding of the

ribosome to mRNA generated from DNA during transcription. Another regulatory

region of a DNA is the Ribosomal Binding Site (RBS) which is transcribedto the

mRNA. The ribosome binds to the transcribed RBS sequence in mRNA.

In general there are three basic segments of DNA which regulate the central dogma

stages: promoters, RBS and terminators. In addition to the regulatory elements, the

gene segment exists which codes for the protein. Each of these elements have an abstract

icon representing them in di�erent tools, which are demonstrated inFigure 2�2 (e). A

genetic regulatory network (GRN) can be de�ned as a set of DNA segments with speci�c

functionalities and various interactions with each other. In a GRN gene expression is

regulated at many molecular levels, from transcriptional to post-translational, through

various feedback mechanisms (Myers, 2009), (Khalil and Collins, 2010). In other words,

the GRN is a circuit of genetic elements in which \wires" are the chemical interactions

among these elements.

7

Figure 2 �1: The central dogma describes the stages of protein biosynthe-
sis. DNA is replicated and make copies of itself in the �rst stage. DNA
is transcribed to RNA by RNA polymerase. Translation is the �nal stage
during which the codons of RNA are translated to protein amino acids.

Various genetic circuits have been proposed and experimented during the recent

decade. Figure 2�2 illustrates some examples of proposed genetic circuits. The Collins

Lab proposed a genetic toggle switch (Gardner et al., 2000) in which the cell's output is

changed between stable genetic states (Figure 2�2 (a)).This switch is constructed from

two subcircuits made of a promoter regulating a gene. Moreover, the genes inside two

subcircuits regulate the promoters on the other set.

The GRN (b) in Figure 2�2 shows the boolean logic AND gate proposed by Chris

Anderson (Anderson et al., 2007). The output of this gate uoresces green if both

inputs are present. This GRN has both transcription level regulations controlling the

input promoters, and the translation level regulation of two internal genes' RNA's.

There are also sequential logic based genetic circuits investigated by synthetic bi-

ologists such as the JK latch proposed by Alfonso Jaramillo (Rodrigo and Jaramillo,

2007). This circuit, in Figure 2�2 (c), has more complex structure with multiple regu-

8

latory relations among genes and promoters in the GRN. JK latches historically were

proposed as memory elements in electronic devices. Therefore, these GRN may serve as

a biological memory device.

Figure 2 �2: Four proposed and experimentally created Genetic Regu-
latory Networks (GRN) and the iconic representation of di�erent DNA
segments. (a) is a toggle switch with the output representing the stable
genetic states. (b) is a GRN for a boolean logic AND gate which can be
controlled from outside of the cell. This �gure is from (Anderson et al.,
2007). (c) is a sequential logic JK latch which can be utilized as a memory
element. (d) is a boolean logic NOR gate; this is the gate that we refer
to extensively in this thesis.(e) shows the icons representing some of the
genetic elements in di�erent tools and standards.

9

Figure 2�2 (d) shows the boolean logic NOR gate proposed by Voigt Lab (Tamsir

et al., 2011). This gate is extensively referred in this work. The presence ofIn1 and

In2 small molecules (or transcription factors), which are respectivelyArabinose and

Tetracycline for the illustrated implementation, controls the regulation of the CI gene.

Hence, if any of the two inputs are present the CI production will beturned on. The

TF of CI represses the CI promoter (pCI) in the second part of the circuit. As a result,

by translation of CI's RNA, the pCI will be repressed which consequently turns o� the

yellow orescent protein's (YFP) production. As a result, we will seeyellow uorescent

only if both inputs are absent.

An abstract genetic regulatory network (AGRN) is a GRN with no speci�c sequence

assigned to the genetic elements. We extensively use two speci�c terms in this thesis:

genetic motifs and genetic primitives. The de�nition of a genetic motif is a set of

genetic primitives which present the topology of a genetic gate at anabstract level.

In other words, a genetic motif is an AGRN of a single genetic gate such as a NOR

motif. Consequently, a genetic primitive is an abstraction of a speci�c genetic element

without having any assigned DNA sequence. For instance a \repressible promoter" is a

genetic primitive which represents a promoter repressible by, smallmolecules, such as

Tetracycline, or transcription factors (TF), such as LacI.

2.2 Clotho data model

The designed software framework for our synthesis ow is implemented as a Clotho App.

Clotho (Xia et al., 2011) is a software suite designed for engineering synthetic biology

systems and managing the data related to them. Clotho o�ers a data model captur-

ing the demands of synthetic biology data. Furthermore, the connection to di�erent

databases in di�erent locations is provided by this data model. Many di�erent objects

are de�ned in this model among which \parts" and \features" are extensively employed

10

in this work.

Parts are objects assigned with speci�c DNA sequences and assembly protocol for-

mats. It is possible to make composite parts by packaging more thanone part together.

Features, similarly, have sequences assigned to them. However, they do not have any

speci�c format; hence, they are not compatible with any assembly protocols. Features

are meant to capture biological functionality. Clotho provides its users with the abil-

ity to create and modify features and parts, and store them in di�erent databases.

The Clotho features are organized in families. Families represent thefunctionality of a

feature which allows for relationships between promoters and genes to be established.

Figure 2�3 shows an abstract view of the Clotho data model discussed in this section.

Figure 2 �3: Partial abstract view of the Clotho data model. The data
model provides the user with di�erent objects. Two of these objects are
\parts" and \features" demonstrated in this �gure. Features have families
which categorize them based on their genetic functionalities. The other
speci�cation of Clotho is connectivity to di�erent databases amongvarious
research centers or institutions.

11

2.3 High level languages for synthetic biology

High level languages (HLL) provide mechanisms for designers to model or describe a

structure that is often able to be interpreted by computers. HLL's are often designed to

be human readable and to conceal low level details from the user. Various HLL's have

been developed for many of the science and engineering disciplines (for instance C++,

Java and Perl among others).

Similarly, in synthetic biology, some research has been devoted to investigating HLL's

for genetic circuit design. Proto is a spatial computing language fordeign and imple-

mentation of biological systems (Beal et al., 2011). In another work (Bilitchenko et al.,

2011) a HLL, named Eugene, is introduced for speci�cation of synthetic biological de-

signs. In this language, the user has the ability to de�ne very expressive hierarchical

primitives and constraints and build a system based on these. Pedersen and Phillips

proposed GEC language (Genetic Engineering of living Cells) which renders the logi-

cal expressions to the interactions of proteins and genes (Pedersen and Phillips, 2009).

GEC's interpreter, similarly to Eugene, generates the DNA sequence for the resultant

composite part.

However, all of these researchers propose new languages (Purnick and Weiss, 2009),

(MacDonald et al., 2011). In this work, we utilized an existing languagedeveloped for

electronic circuit design. We proposed using a hardware descriptionlanguage (HDL)

called Verilog (Thomas and Moorby, 1995) for describing synthetic biological systems.

Using Verilog has several potential advantages:

� It provides a very mature, expressive language with a large user base, tremendous

library support, and synthesis tools from higher level languages.

� Algorithms and techniques for logic synthesis of electronic circuits can now be

re-cast more easily to apply to genetic circuits.

12

� It connects electrical engineers to the �eld of synthetic biology providing increased

collaborative opportunities.

One of the main goals of this thesis is to determine whether using an existing language

with wide user base such as Verilog will be possible and bene�cial for designing genetic

circuits or not.

2.4 Compilation and synthesis tools for synthetic biology

In the design automation process, the HLL's facilitate describing designs and modeling

them at an abstract level. In addition to the HLL's, automation requires a compiler

to interpret the input description and transform it to a processable format. Moreover,

extraction of an implementable system requires a synthesizer parsing the compiled de-

scription and generating the output based on a set of de�ned constraints.

Tools developed for automation of synthetic biological systems alsoproposed various

compilers and synthesizers. For example, BioCompiler creates a gene network based on a

set of regulatory motifs (Beal et al., 2011). Similar to the synthesismethod investigated

in this thesis, some optimization algorithms are also provided for the compiler. The

main di�erence between BioCompiler and Cello is that the generated mapped GRN in

the former is based on the spatial data ow representation and in the latter is based on

the interconnection of functional logic gates.

GenoCAD is another tool for designing synthetic DNA sequences (Czar et al., 2009).

In this work, the results produce systems considering a set of motif based \production

rules". Similar to Cello, GenoCAD has its own data model and provides the users with

access to shared and protected part libraries. There are two maindi�erences between

GenoCAD and Cello. First, GenoCAd does not support any HLL for designing circuits.

Moreover, GenoCAD performs based on the rules and does not include any optimization

techniques.

13

In this thesis, the synthesis ow is derived from synthesis methodologies in electronic

engineering. The key component in electronic circuit synthesis is called \technology

mapping" in which a technology independent logic network is transformed into gates

available in the standard cell library of the target hardware platform. The technology

mapping methods are mostly based on algorithms for mapping directed acyclic graphs

(DAG) (Stok and Tiwari, 2002), (Keutzer, 1987). The steps of technology mapping are

decomposition to primitive cells, pattern matching of the library elements to nodes in

the generated DAG, and �nally covering of the DAG based on the most optimal matches.

In our proposed synthesis process, the technology mapping stage transforms the

nodes in the DAG to their functional or structural matches in the available biological

motifs library. As a result, each biological motif includes a directed acyclic subgraph

(DAsG) which represents its functionality and structure at the gate level. The algorithm

for mapping is optimized for �nding a mapped DAG with the minimum number of nodes.

14

Chapter 3

Overview

In this thesis, we propose a process ow and a software framework for designing genetic

regulatory networks using hardware design methodologies. The input of our process

ow (as well as the software toll) is a circuit description in Verilog language. The

�nal output is a DNA sequence which if implemented will demonstrate the described

behaviors. The main ow of our synthesis approach can be categorized into three basic

stages. The process of synthesis inside our software tool, Cello, starts from compiling

the input description of the circuit. We called this �rst stage \Compilation". Next,

in the \Mapping" stage, we replace the basic boolean operators, which are utilized

in the input circuit description, with equivalent motifs of genetic gates. In the �nal

stage, \Assignment", Cello assigns actual sequences to the motifs and generates the

�nal sequence.

Figure 3�1 shows a high-level view of each process stage. Each colored box inthe

�gure demonstrates one stage of process with the resulted output of that stage.

1. Compilation

The input for the Compilation stage is a compatible Verilog �le (ccVerilog). Cello

currently supports a limited subset of available features in Verilog. The Directed

Acyclic Graph (DAG) data structure is utilized for representing compiled input

description. At this stage, Cello transforms the compiled description to a single

gate based DAG. Furthermore, a gate level optimization is performed on gate-level

15

DAG. More detailed information about the compiler and the algorithmsis given

in chapter 4 section 4.1.

2. Mapping In the Mapping stage, operational vertices of the DAG are replaced by

elements from a library of biological logic gates. This stage is conceptually analo-

gous to technology mapping in electronic circuit design (Keutzer, 1987) , (Lehman

et al., 1995), in which operations are mapped to their equivalent transistor based

gates. Often in electronic circuits the logic decompositions are converted to NAND

based single gate circuits since this structure is favorable in silicon. However, in

synthetic biology, there are feaw basic gates and no consensus ofoptimality. More-

over, di�erent types of gates can be used in a genetic circuits, some of which can

function based on transcription elements (e.g. promoters) (Frezza et al., 2007),

(Tamsir et al., 2011), (Yokobayashi et al., 2002) while others are based on transla-

tional elements (e.g. ribosome) (Rinaudo et al., 2007), (Stojanovicand Stefanovic,

2003), (Anderson et al., 2007). Hence, having a library of basic parts enables users

to implement circuits according to their needs and constraints. At the end of this

stage, a motif level graph of the genetic circuit is created which consists of genetic

primitives such as promoters, coding sequences and ribosomal binding sites. In

chapter 4 section 4.2 the details of this stage is pointed.

3. Assignment In the �nal stage, real sequences are assigned to the primitives inside

the motif-level DAG. user selects a set of transcription factors that can be consid-

ered in the circuit and assigns each input and output port a transcription factor

(this can be extended to wires which are not currently available in Cello). This

selection will e�ect assignments to the other primitives. An orthogonal set of parts

regarding to circuit primitives are fetched from a connected database. Therefore,

cross-talks among parts inside the circuit are removed. At the enda sequence of

16

DNA which is in fact a set of composite parts is generated by Cello. Thegenetic

network represented in �nal sequence is consistent with the initialinput model of

the circuit. We discuss this stage in particular in chapter 4 section 4.3.

All of these three stages include optimization algorithms for improving output circuit.

For a more complete design ow, two additional level of optimization are also required.

Although this project does not address these additional optimizations, they have been

investigated by other research groups. The �rst level of optimization can be applied on

the Verilog description code to make design more e�ective based on di�erent targets.

In electrical engineering �eld many researchers have been investigated approaches to

translate the behavioral Verilog description to structural description. For instance,

Cadence RTL Compiler (Systems, 2011) provides a global solution for synthesizing an

optimized net-list for the input description. The trade o� among di�erent optimization

goals are also considered in such tools. However, as a future work asynthesizer tool

could be designed considering the requirements of the genetic circuits design. Moreover,

in order to be physically implementable, the output DAN sequence needs to be processed

and checked for assembly requirements.

17

Figure 3 �1: Three stages of genetic circuits synthesis process ow. The
input circuit model is compiled into a gate level DAG in the �rst stage.
Next, compatible motifs are assigned to each operational vertex inthe
DAG and the Mapping stage creates a motif level DAG. Finally in the
Assignment stage, the actual DNA sequence constructing the genetic reg-
ulatory network is generated.

18

Chapter 4

Design Process

This chapter discusses the methodologies and algorithms used to process the Cello com-

patible verilog (ccVerilog) input description and create the �nal DNA sequence repre-

sented by a set of composite parts. We propose the following designow:

1. Compilation (input: ccVerilog; output: gate level DAG)

(a) Compilation and DAG generation (section 4.1.1)

(b) Technology transformation (section 4.1.2)

(c) Gate level optimization (section 4.1.3)

2. Mapping (input: gate level DAG; output: motif level DAG)

(a) Genetic motif selection (section 4.2.1)

(b) Technology mapping (section 4.2.2)

(c) Motif level optimization (section 4.2.3)

3. Assignment (input: motif level DAG; output: DNA sequence)

(a) Constraint determination (section 4.3.1)

(b) Orthogonal feature selection (section 4.3.2)

(c) Feature assignment (section 4.3.3)

(d) Part level optimization (section 4.3.4)

19

(e) Output packaging (section 4.3.5)

The details of each of these stages are discussed in their associated subsections.

In order to have a more cohesive discussion we use a running examplebased on the

ccVerilog code shown in Figure 4�1 . The examples and �gures of all of the sections in

this chapter refer to this example.

It should be mentioned that in order to automate the implementationprocess some

post-synthesis processes are required. These external processes prepare the resultant

composite parts for liquid handling robot assembly. Information about the post-synthesis

stages conludes this chapter in section 4.4.

Figure 4 �1: The ccVerilog code for the running example of Chapter 4.
This is a single output (O) circuit, which creates a combinational logic
expression using the input A, B and C. This module only includes a single
continuous assignment statement.

4.1 Compilation

In this �rst stage the input ccVerilog �le is read and compiled. A directed acyclic

graph (DAG) representing the compiled code is prepared for the Mapping stage after

transformation and optimization.

20

4.1.1 Compilation and DAG generation

In order to be able to process the input description (ccVerilog) a compiler is required

to transfer the text-based input description to an internal representation. this represen-

tation for Cello is an Abstract Syntax Tree (AST). The lexer and parser for Verilog is

generated using ANTL v.3 (ANother Tool for Language Recognition) (Parr, 2007) (Parr

and Quong, 1995). After applying some changes to the existing grammar �le for Verilog

(Ter-Galstyan, 2008), the compiler for generating a hierarchicalAST is created in Java.

An example of the generated AST is illustrated in Figure 4�2.

Figure 4 �2: The ine�ciency of the Verilog AST. An example of AST
generated by ANTLR lexer and parser for Verilog. The existing nodes in
the AST are mostly related to the syntax of the code. These nodesare
not considered for synthesis. Red circles in the �gure highlight the nodes
required for synthesis. Moreover, the structure of AST does not represent
the ow of data accurately. For example in this AST two di�erent nodes
were assigned for input port B. The illustration is created in ANTLRWorks
environment.

As can be seen in the �gure, the majority of the nodes in the AST arerelated to

syntax (for example each semicolon in the code creates an AST node). Moreover, the

ow of data and gates interconnections are not represented in the AST. As a result,

the generated AST must be converted to a DAG. DAG data structures are primarily

used in the electronic systems algorithms since they can capture the interconnection of

21

components, and also the direction of the information (current) ow (Keutzer, 1987),

(Lehman et al., 1995). Moreover, DAG 's are inherently acyclic for output and input

connections, which is ideal for combinational circuits.

c l a s s Vertex f
i n t index ;
Edge outgo ing ;

g

c l a s s Edge f
i n t index ;
Vertex from ;
Vertex to ;
Edge next ;

g

Figure 4 �3: The pseudo code for the DAG data structure utilized in
Cello. Since edges are linked to each other, the output degree of each
node is unlimited.

The pseudo code of the DAG data structure that we used in this work is presented

in Figure 4�3. This data structure provides us with the ability to have an unrestricted

output degree for each node by having a linked list based implementation of edges.

Considering this data structure, a DAG is simply a list of pointers to vertices and edges.

An illustration of the generated DAG for the given AST is shown in Figure 4�4. The

generated DAG, in other words the \netlist" of the input circuit description, shows

the connectivity of the design. See Appendix A for a discussion on the restrictions on

standard Verilog for Cello.

4.1.2 Technology Transformation

The main goal of the Compilation stage is to prepare the input circuit description to be

implemented using the genetic motifs. This concept is similar to technology mapping

in electrical circuit design. In integrated circuit (IC) design all of the logic operators

22

Figure 4 �4: DAG for the AST example shown in Figure 4�2. The required
information for the next stages in the synthesis process is now embedded
in the DAG representation. The ow of data is from output node (O in
this case) towards inputs (A, B and C in this case) in order to have a
canonical structure. The generated DAG is considered the \netlist" of
the input circuit description.

used in the input description are transformed to a single gate type.Since every boolean

logic function can be expressed using either NAND or NOR operators, the whole circuit

description is transformed to either a NAND-based circuit or a NOR-based circuit. In

this work our base genetic motif is based on the NOR gate proposed by (Tamsir et al.,

2011) and described in the background section 2. we substitute allof the logic operations

in the DAG to their equivalent by NOT and NOR operations.

The algorithm in this work �nds all of the non-NOR operation verticesin the graph

and substitutes that node with the equivalent subgraph. The equivalent subgraphs for

AND and OR operators are illustrated in Figure 4�5.

23

Figure 4 �5: The equivalent NOT/NOR based subgraphs for OR and
AND boolean operations. The OR and AND operation nodes in the DAG
are replaced by their equivalent DAsG. As a result, the transformed DAG
will be solely based on NOR and NOT gate types.

4.1.3 Gate Level Optimization

The applied transformation approach does not guarantee to produce the optimal result

(i.e. minimum number of boolean algebraic terms). In other words, the number of

boolean terms after transformation may have increased. As a result, we add another

level of optimization termed \gate level optimization". One of the main side e�ects

of transformation to NOR/INV based boolean network is double negation. This work

implements an optimization algorithm which �nds all of the tandem inverters in the

graph and removes them.

In order to provide the user with exibility, an option is provided to remove double

inverters if the transformed circuit is OR/INV based or NOR/INV based. In the former

case, all of the double negations will be removed from the circuit, while in the latter case

we need to keep the format of NOR (which has an INV in front of OR) and remove double

inverters that are NOT part of the NOR gate. Based on the experimental results shown

in the supplementary materials of (Tamsir et al., 2011) the implementations that have

outputs a�ected by repressible promoters have higher thresholds between high and low

outputs. Consequently, using a NOR/INV based network may increase the reliability of

24

the circuit.

Other logic minimization techniques can be applied at this level. Quine andMc-

Cluskey logic minimization algorithm (Katz, 1993) is one of the most popular approaches

and can be automated; however, it has high time and memory complexity and limits

on the number of variables. A heuristic based approach such as Espresso (Rudell and

Sangiovanni-Vincentelli, 1987) can be used at this level. However, this method is de-

signed for Programmable Logic Array (PLA) based circuits and generates two-level

optimized expression. A multi level optimized expression can be extracted from the

optimized two-level output of Espresso by factorization. However, it again requires

transformation to NOR based network which results in a non-optimal circuit.

An abstract view of the netlist graph for the running example is shown in Figure

4�6. Graph (a) shows the original netlist which is generated after compiling the Verilog

code and creating the DAG. By running the transformation algorithm graph (b) is

generated. The substituted equivalent DAsG's for \&" and \j" nodes are shown in Figure

4�5. Graph (c) shows the result of moving of double negations from the transformed

graph considering the NOR/INV basic gates. Finally, a complete removal of all tandem

inverters generates graph (d) which is actually an OR/INV based circuit.

25

(a) (b)

(c) (d)

Figure 4 �6: Netlist view of the (a) original expression, (b) transformed
expression, (c) optimized transformed expression with package NOR gates,
and (d) optimized transformed expression without any restriction. The
highlighted nodes (colored yellow) of (a) show the operational nodes in
original netlist. Graph (b) has \&" and \ j" nodes replaced with their equal
NOR based DAsG. In the graph of �gure (c) only the double inverterin
front of the port B is removed. This occurs because removing the other
double inverter nodes would result in the destruction of the NOR structure
(highlighted nodes). In graph (d) all of the double inverters are removed
which is the minimal representation of the input boolean expression.

26

4.2 Mapping

After compiling the input model and preparing it by transforming to single gate type

netlist, the Mapping stage begins. In this stage, an operation analogous to technology

mapping in electrical circuit design is applied to the input netlist based on a library of

available genetic motifs. The de�nition of a genetic motif is a set ofgenetic primitives

which present the topology of a genetic gate at an abstract level. Consequently, a genetic

primitive is an abstraction of a speci�c genetic part without having any assigned DNA

sequence. For instance aRepressible Promoteris a genetic primitive which represents

a promoter repressible by small molecules, such as Tetracycline, ortranscription factors

(TF), such as LacI.

The motif for the biological NOR gate is based on the proposed NOR gate in (Tamsir

et al., 2011). This motif is shown in Figure 4�7. In part (a) of this �gure this motif

diagram is drawn using a CAD tool for synthetic biology named TinkerCell (Chandran

et al., 2009). In Cello since inputs and outputs of a motif can be connected to other

motifs or I/O ports (TF's), we need to represent the topology of the motif as well as

the primitives. As a result, each motif has a directed acyclic subgraph (DAsG) related

to it which abstracts the interconnection of the constructing primitives. Furthermore,

using the DAG data structure the restriction of not having cross-talk within the gate

can be enforced. Cross talk may be de�ned as the undesirable e�ect of elements inside

a construct on each other. The DAG of NOR motif is demonstrated inFigure 4�7(b).

Please notice that the direction of the edges in the DAG is from output to inputs (in

order to have a canonical representation).

Details regarding the internal methods of the Mapping stage are discussed in the

following sub sections.

27

(a) (b)

Figure 4 �7: Two views of a NOR motif (a) is created using the TinkerCell
tool and (b) is the view of the NOR DAsG in Cello. Having separated
input promoters in DAsG representation eases the parsing of the netlist
DAG and running of optimization algorithms.

4.2.1 Genetic motif selection

One of the main goals of this synthesis ow is to provide users with a exible design

environment. This can be achieved by providing the ability to select the type of motifs

(i.e. abstract genetic gates) that can be utilized in the circuit. The granularity of motifs

can be di�erent and a motif can have a multi-layer hierarchy (similar tomodules in

electronic design). Basically, a user can select a motif or de�ne a motif and describe its

boolean functionality. For instance, a motif can be a simple bu�er or inverter, or it can be

a module which instantiates other previously designed motifs. This idea is conceptually

similar to the IP-cores (intellectual property cores) in recon�gurable electronics (e.g.

Field Programmable Gate Arrays).

In addition to the structure of the motif, its functional characteristic is also exible.

28

A user can select for example a NOR motif which functions in the transcriptional level

and connect it to an AND motif which is in the translational level. Providing a design

tool with this level of exibility may lead to more optimized, complex and reliable

designs. However, these features demand more standardized characterization criteria in

order to design �nal circuits. For instance, transfer functions for each motif need to be

speci�ed since the input and output signals of two connected modules must be matched.

In other words, the high and low threshold levels of an input signal ofa front gate should

be matched with those of the connected output port of the input gate. A similar work

has been done in (Yaman et al., 2011).

Cello is implemented as a Clotho app and has access to the Clotho data model and

database. However, in the current version of the Clotho data model genetic motifs and

primitives are not de�ned. As a result, we do not have a library of genetic motifs with

digital behaviors. Consequently, the stage of motif selection froman external library

is not completely implemented in Cello. However, the structure of theMapping stage

is designed to be exible for the future addition of a library and the ability to select

various motifs. In the current version of Cello, three hard-codedmotifs are implemented.

The �rst motif functions as an inverter. The second is a two input NOR motif based

on (Tamsir et al., 2011) article. Finally, we proposed a three input NORstructure

in which we simply added a third input promoter to the two input NOR structure.

No experimental tests have been done on the three input NOR yet.Illustrations of

an inverter and a three input NOR motifs are provided in Figure 4�8 (a) and (b),

respectively.

4.2.2 Technology mapping

The Verilog description of an input design can be written using any setof boolean

operators. On the motif library side, we can design and implement di�erent motifs and

29

(a) (b)

Figure 4 �8: Schematics of (a) Inverter and (b) three input NOR motifs
drawn by TinkerCell CAD tool. The explanations about how these gates
function are given in detail in Chapter 2.

genetic gates with multifarious boolean functionalities. As a result, inorder to be able

to map an input operator to a motif, an interface boolean function isrequired. Using

this boolean function, both the functionality of input description and the behavior of

genetic motifs need to be represented. The main di�erence between technology mapping

in electronic circuit design and genetic circuit design appears in the fact that in electronic

circuits a single gate based technology is selected (for instance NAND CMOS circuit or

Look-Up Tables) while in genetic circuits di�erent types of gates canbe used.

Taking this issue into consideration, the boolean functions of all motifs are trans-

formed to two input NOR based functions. For instance, Figure 4�9 illustrates the for

the transformed circuit for three input NOR gate. Two exceptionsare inverter and

bu�er motifs, which are not transformed to NOR gates.

The implemented algorithm for mapping is based on pattern matching among the

input graph and the transformed NOR-based graphs of motifs. The subgraph isomor-

phism problem is known to be NP-complete (Garey and Johnson, 1979). However, in

this work, we used a cost based heuristic in order to reduce the timecomplexity. A list

30

Figure 4 �9: The boolean equivalent structure for three input NOR gate
constructed by NOR2/INV gates. Similarly to three input NOR, all of
the other motifs' boolean functions are transformed to NOR2/INV based
structures.

of available motifs is created in which motifs are sorted based on theircosts. The cost

here is de�ned as the ratio of number of primitives to number of operational nodes in

the transformed boolean graph. For instance, in the case of having motifs for inverter,

NOR2 and NOR3, the order of the list will be 1- NOR3 2- NOR2 and 3- INV.

Two main loops in the algorithm iterate over the DAG. In the outer loop, the algo-

rithm runs a breadth �rst search and �nds the operational nodes. For each operational

node, in an inner loop, the algorithm explores the connected subgraph of that node

while the parsed pattern matches with at least one of the available motifs in the list.

The found subgraph will be covered by the motif with the lowest cost.

If a node is covered previously, the algorithm does not iterate its inherited graphs.

As a result, not all of the possible combinations are checked, and the best mapping

may not be reached at the end. After all of the nodes in the graph are parsed by the

algorithm, the covered subgraphs are substituted by their equivalent motif DAsG's in

another iteration. The output of the mapping algorithm is a motif level DAG which is

an interconnection of genetic primitives.

In Figure 4�10, we demonstrate the results of mapping on the gate level DAG of

Figure 4�6 (c). In 4�10(a) the blue circles point to the NOR operators in the gate level

DAG. One of the inverter nodes is circled by an orange line. After running the mapping

algorithm which only includes two input NOR and NOT motifs, the motif level DAG

4�10(b) is created. The substituted motifs for each of the operators pointed in the DAG

31

4�10(a) are enclosed by the same color lines in the motif level DAG 4�10(b). There are

48 primitive nodes in the DAG (b).

The motif level DAG 4�10(c) is created after mapping the gate level DAG to the mo-

tifs of three input NOR, two input NOR and NOT. As can be seen in the Figure 4�10(c),

by using a three input NOR, two of the connected NOR operators and the inverter be-

tween them are combined. The motif circled in green in 4�10(c) is the combination of

the two NORs and the INV in the gate level DAG of 4�10(a). Using this new set of

motifs, the motif level DAG 4�10(c) is generated by 13 fewer primitives (35 nodes).

(a) (b) (c)

Figure 4 �10: The motif level DAG's generated after mapping the gate
level DAG of Figure 4�4 using di�erent sets of available motifs. The colored
shapes in (a) show the NOR and NOT operators. The motifs mapped to
the operators are also shown enclosed by a same color box. In motif
level DAG of (b) two input NOR (blue shapes) and NOT (orange shapes)
motifs are mapped. Graph (c) shows the motif level DAG mapped to a
set of three input NOR (green shapes), two input NOR and NOT motifs.

32

We know of no work that de�nitively demonstrates a relation between the number of

primitives inside a genetic regulatory network and the reliability or theoptimality of the

network. However, since the number of available genetic parts arelimited, a circuit with

a lower number of primitives is more feasible from a physical implementation standpoint.

4.2.3 Motif level optimization

As stated before fewer researchers have investigated the optimization of genetic reg-

ulatory networks. In other �elds, various optimization criteria have been researched

and methods have been developed. For instance, in electronic circuit design the main

optimization targets are area, timing delay and power consumption.

In genetic networks, no speci�c optimization target has been clearly de�ned. Some

criteria have been proposed such as (Beal et al., 2011) and (Marchisio and Stelling,

2009). In our synthesis process, however, we developed an optimization algorithm which

removes the redundant genetic elements from a designed network. Beginning with the

whole structure of the genetic circuit in the motif level DAG, we can �nd the redundant

parts of the DAG. A redundant part is a part which does not have any e�ect on the

overall logical behavior of the circuit. For instance a bu�er does not have any logical

e�ect on the output value of a circuit.

The motif level DAG is created by connecting di�erent motifs to eachother. Bu�ers

can be created by linking these motifs to each other. The structure of a bu�er is a

coding sequence which is followed by an inducible promoter. In fact, there is a direct

gene induction (activation) which is same as a bu�er. Hence, if we remove these elements

and connect the input of the bu�er to its output, the functionality of the circuit will not

change.

For instance, the bu�er sites in the motif level DAG of Figure 4�10 (b) are illustrated

in Figure 4�11. The highlighted nodes (yellow colored) in the DAG 4�11(a) show the

33

bu�er sites in the motif level DAG. The algorithm �nds �ve bu�ers in th is example and

removes their nodes from the DAG. Following that, the input of eachbu�er is connected

to its output. The result of motif level optimization with bu�er remov al is shown in

Figure 4�11(b). Each highlighted node in 4�11(b) shows the output of bu�er which is now

linked to its input. In the optimized motif level DAG 21 fewer nodes (i.e.primitives)

exist in comparison to the non-optimized DAG.

The removal of bu�ers can be considered an optimization since by doing so the

number of required motifs decreases. However, the redundant bu�ers may have other

e�ects on the circuit. For example, a circuit might be more reliable if the bu�ers are

not removed. Future work should involve experimentally exploring these concepts after

physical implementation of both optimized and non-optimized circuitsin the laboratory

environment.

4.3 Assignment

Our proposed synthesis process starts from the compilation of the input ccVerilog circuit

description (which creates a netlist DAG of the circuit). The generated gate level DAG

can be transformed to single gate type structure and optimized. After this �rst stage,

the gate level DAG is converted to a motif level DAG in the mapping stage. The motif

level DAG represents the abstract genetic regulatory network (AGRN) of the input

description. Another level of optimization can also be performed atthe motif level.

After the �rst two stages, we have the Assignment stage. The aimof this stage is to

assign real DNA sequences to the primitives comprising the motif level DAG (AGRN).

The output of this stage is the actual DNA sequence for a set of composite parts. In

other words, the physical realization of the input circuit description is generated.

This stage is completely linked to the Clotho data model and the associated database.

The sequences of parts assigned to primitives are fetched from the Clotho database.

34

In the Clotho data model, each feature1 is categorized in a family type1. Based on

the family type, the set of features related to a primitive can be fetched. Based on

the annotation sequences on the parts, the relation between parts and features can be

established. As a result, each motif is assigned to a composite part.More description

about the Clotho data model is given in Chapter 2.

(a) (b)

Figure 4 �11: Graph (a) is the result of the mapping stage which includes
�ve bu�ers. The highlighted nodes show the primitives of bu�er motifs.
After running motif level optimization, DAG (b) is created. The high-
lighted nodes in the DAG (b) shows the outputs of the bu�ers which are
connected to their inputs.

1This is de�ned in the background Chapter 2.

35

4.3.1 Constraints determination

We assume that a genetic circuit will have various limitations on the type of the genetic

elements with which it is constructed. As a result, a �nal DNA sequence requires that

these constraints be applied to the circuit. In the current implementation of the synthesis

process and consequently Cello, we consider constraints applied onall the transcription

factors (TF) which exist in the whole genetic regulatory network. For instance, we

assume the cell in which the designed network is implemented will be defective if a

speci�c type of TF exists. Hence, the designer of the circuit can apply this constraint

by specifying the set of applicable TF existing in the database.

With the selection of TF's, the applicable promoters and coding sequence genes are

also implicitly speci�ed. The design space only includes the promoters that can be

regulated by one of the selected TF's and coding sequence genes that can produce those

TF's.

Another level of constraints can be determined for the input and output of the GRN.

Our assumption here is that a circuit is designed for a speci�c application. Therefore,

speci�c types of TF's can control the design. In addition to the inputs, outputs of a

circuit need to be speci�ed based on the application. By specifying the TF's related to

the inputs and outputs of the circuit, we establish what a device cansense and how it

reacts to the external stimulus.

4.3.2 Selection of Orthogonal features

For a genetic circuit to function accurately, all of the regulatory relations among its

elements need to be mutually exclusive (orthogonal). We separate types of relations into

two main categories. The �rst category is the activation regulationwhich is between

TF's and promoters. A TF can induce or repress di�erent promoters. Also, a promoter

can be induced or repressed by di�erent TF's. As a result some of the promoters are

36

not independent or in other words they are not orthogonal. The other main category

of relations are production of TF's by coding sequences. Di�erent coding sequences can

produce the same TF's.

Each of these two categories can be represented in a two dimensional matrix which

we process for �nding the orthogonal subset. An example of an activation regulation

matrix is demonstrated in Table 4.1 . The vertical axes of matrix are the promoters and

the horizontal axes are the TF's. The cells are equal to 1 if an activation relation exists

among the promoter and the TF. The TF columns are ordered from left to right based

on their necessity for circuit implementation. Hence, if a TF is assigned for an input

then it should be in a column further left. In addition to ordering based on necessity,

the TF's which have a lower number of relations are located in the moreleft columns,

because they have less cross-talk.

Assume we have a set of four TF's and six promoters. The activationregulation

matrix of these TF's and promoters is demonstrated in Table 4.1. TheX and Y TF's

are assigned to input ports of the circuit. Notice that here we do not consider the

running example circuit of Chapter 4. For sake of simplicity, we consider a design that

can be implemented using three TF's and has two inputs.

In the �rst stage of the algorithm, Prom2 is selected for TFx. As a result, the column

of TFx is removed for the next stage. Moreover, all of the columnswhich have 1 in the

row of Prom2 need to be removed. Hence, the column related to TFyis completely

inactivated. Table 4.2(a) shows the initial matrix with selection of Prom2 for TFx in

pink color and the a�ected cells in light gray and dark gray colors. When a TF and a

promoter are paired, the row and column related to them are collapsed and a reduced

table is generated. The collapsed row and column is shown in light gray color. Also

selection of Prom2 restricts the use of TFy, since TFy also have relation with the Prom2.

As a result, we need to inactivate all of the relations in the TFy column(shown in dark

37

Table 4.1: Activation regulation table for promoters and TF's. The
vertical axes of matrix are the promoters and the horizontal axes show
TF's. The cells are equal to 1 if an activation relation exists among the
promoter and the TF.

TFx TFy TFz TFm

Prom1 0 0 0 1

Prom2 1 1 0 1

Prom3 0 1 1 0

Prom4 0 1 0 0

Prom5 1 0 1 0

Prom6 0 1 1 1

gray). Moreover, the promoters that are a�ected by TFx (e.g. Prom5) needs to be

inactivated. After applying these changes Table 4.2(b) is created.

As can be seen in Table 4.2(b), we do not have any available promotersto be selected

for TFy after selection of Prom2. Since TFy is one of the assigned TF's for the inputs

of our circuit, the algorithm needs to back track to try another promoter selection for

TFx. Hence, the pair of TFx and Prom5 is selected in the next stage.The a�ected row,

column and cells are shown in Table 4.3(a). Moreover, the �ltered table after selection

of Prom5 for TFx is demonstrated in Table 4.3 (b).

In the next stage, the algorithm pairs TFy with Prom3. The result ofselection and

the �ltered table is shown in Tables 4.4 (a) and (b). Prom5 and Prom3 are added to

the list of orthogonal promoters at the conclusion of this selection.

Given the Table 4.4(b), the algorithm cannot �nd any promoter for TFz. However,

this TF is not assigned to any input port; consequently, there is no obligation to have

TFz available. Since we are still looking for one more TF-promoter pair(remember

the circuit requires three TFs for implementation), algorithm removes the column TFz

38

Table 4.2: The activation regulation table and changes that needs to be
applied after selection of Prom2 for Tfx (the pink cell in (a)). The light
gray row and column are removed for creation of the new table. Thecells
in dark gray are also inactivated in the new table. (b) shows the table
after applying required changes. Since TFy does not have any available
promoter for selection while it is a required TF, the algorithm traces back
to selection of another promoter for TFx.

(a)

TFx TFy TFz TFm

Prom1 0 0 0 1

Prom2 1 1 0 1

Prom3 0 1 1 0

Prom4 0 1 0 0

Prom5 1 0 1 0

Prom6 0 1 1 1

(b)

TFy TFz TFm

Prom1 0 0 X

Prom3 X 1 0

Prom4 X 0 0

Prom5 0 X 0

Prom6 X 1 X

from table (Table 4.5(a)) and creates the new Table 4.5(b). From this new table, the

algorithm selects Prom1 for TFm and adds it to the orthogonal promoters set. At

the end of this stage we have a su�cient number of promoters and algorithm returns

f Prom1, Prom3, Prom5g as orthogonal promoters.

The same algorithm runs on the gene production regulation matrix. Only TF's that

have orthogonal promoters regulated are checked in the production regulation table. In

this matrix (table) on the vertical axes are genes and on the horizontal axes are TF's.

The TF's in this table are ordered based on the assignment to outputs, the assignment

to inputs, and the number of regulatory genes related to them. The output of this run

is a set of orthogonal genes and the TF's which they are producing.

By taking the intersection of the two output orthogonal sets of the (gene, TF) and

(TF, promoter), we have a set of paired orthogonal (gene, promoter). Using this new

set we can assign appropriate features to the primitives of type \coding sequence" and

39

Table 4.3: The activation regulation table and changes applied after
selection of Prom5 for Tfx (the pink cell in (a)). The light gray row and
column are removed for creation of the new table. The cells in dark gray
are also inactivated in the new table. (b) shows the table after applying
required changes.

(a)

TFx TFy TFz TFm

Prom1 0 0 0 1

Prom2 1 1 0 1

Prom3 0 1 1 0

Prom4 0 1 0 0

Prom5 1 0 1 0

Prom6 0 1 1 1

(b)

TFy TFz TFm

Prom1 0 0 1

Prom2 X 0 X

Prom3 1 X 0

Prom4 1 0 0

Prom6 1 X 1

\promoters" when the former primitive has an induction/repression relation with the

latter primitive.

The other primitive types such as terminator and RBS do not requireto be checked

for orthogonality since they cannot have cross-talk. Based on the type of these primi-

tives, appropriate features are fetched from the database using Clotho.

4.3.3 Feature assignment

In this stage the DNA sequence for each primitive in a motif level DAG isassigned. The

order of assignment steps is:

1. Input promoters - First, based on the assigned input TF's, the promoters con-

nected to the input ports are assigned to their related promoter features in the

orthogonal set. In this level some of the promoter types may notmatch with the

selected orthogonal promoter. We discuss the solution for this problem in the

section 4.3.4.

40

Table 4.4: The activation regulation table and changes applied after
selection of Prom3 for Tfy (the pink cell in (a)). The light gray row and
column are removed for creation of the new table. The cells in dark gray
are also inactivated in the new table. (b) shows the table after applying
required changes.

(a)

TFy TFz TFm

Prom1 0 0 1

Prom2 X 0 X

Prom3 1 X 0

Prom4 1 0 0

Prom6 1 X 1

(b)

TFz TFm

Prom1 0 1

Prom2 0 0

Prom4 0 0

Prom6 X X

2. Internal promoters - After assigning the input promoters, the internal pro-

moters are assigned. For these promoters, since a gene (coding sequence) either

represses or induces the promoter's activity, we make the feature assignment based

on the orthogonal (gene, promoter) set created in the previousstage.

3. Internal coding sequences - Next, based on the internal promoter assignment,

the coding sequences related to promoters are assigned. Hence,for each coding

sequence in the motif level DAG, the regulated promoter which follows it is fetched.

Then, the paired feature is fetched from the orthogonal (gene,promoter) set.

4. Output coding sequences - As discussed previously, for each output of the cir-

cuit a TF is assigned by the designer. Based on the output TF the coding sequence

that can produce it is fetched from the orthogonal (gene, TF) set generated in the

previous stage.

5. Ribosomal binding sites - In the current implementation of Cello, we set the

same feature for all of the RBS's in a circuit. However, in our synthesis process,

41

Table 4.5: The activation regulation table and change applied after se-
lection of Prom1 for Tfm (the pink cell in (b)). The light gray column
is removed for creation of the new table since not any promoter canbe
selected for TFz. After this stage algorithm returnsf Prom1, Prom3,
Prom5g set as orthogonal promoters.

(a)

TFz TFm

Prom1 0 1

Prom2 0 0

Prom4 0 0

Prom6 X X

(b)

TFm

Prom1 1

Prom2 0

Prom4 0

Prom6 X

an optimization approach based on the RBS calculator designed by the Voigt Lab

and the Salis Lab (Salis et al., 2009) is proposed. More details about this proposal

is explained in section 4.3.4.

6. Terminators - All terminators are also assigned to the same feature which is

fetched from the database.

Due to the limits in the number of available biological parts, some of theprimitives

may remain unassigned in more complex circuits. The assignment process is not stopped

due to lack of resources unless no features can be found for inputor an output of the

circuit. For instance, after execution of the Assignment stage onthe running example of

Chapter 4, the graph of Figure 4�12 is generated. The name of the nodes demonstrate

the assigned feature's name. The highlighted nodes are unassignednodes for which the

label is the type of the primitive. Graph (a) is the assigned version ofthe optimized

mapped input graph utilizing two input NOR (Figure 4�10 (b)). In this graph (a),

eight unassigned nodes can be seen. However, using the three input NOR motif for

mapping and optimizing the motif level DAG, the assigned version has six unassigned

42

nodes shown in Figure 4�12(b). Therefore, using three input NOR results in fewer nodes

and consequently a higher assignment success percentage.

(a) (b)

Figure 4 �12: Outputs of the Assignment stage on two di�erent mappings.
(a) shows the assigned nodes for 2 input NOR mapped DAG. The same
input DAG after mapping to three input NOR and assignment is shown
in (b). The highlighted nodes demonstrate the unassigned nodes which
are labeled by their primitive types. The number of unassigned primitives
in DAG (b) is lower than DAG (a).

43

4.3.4 Part level optimization

We named this optimization stage \part level optimization" since the optimization is

done either during the assignment of the motifs or on the assigned motifs. In the current

version of the tool, only one of the following proposed methods is implemented.

By assigning TF's for input ports, after running the orthogonal selection of features

stage, a promoter feature is assigned to the promoter primitive connected to that port.

However, in some cases the type of the regulation of the primitive does not match

with the selected feature's type. For instance, in Figure 4�11 (b) (page 34)port B is

connected to a repressible promoter which is shown by a green circle. On the other

hand, the TF selected for this port is Arabinose which induces the PBad promoter.

As a result, we cannot assign PBad to the \rpromoter" primitive. In the part level

optimization stage, a bu�er is added in front of the repressible promoter converting the

inducer input TF Arabinose to a represser (Figure 4�13 (a) blue square). However, due

to an insu�cient number of repressor coding sequences and repressible promoter pairs

this bu�er cannot be assigned completely. Since the other promoter connected to B is

an inducible promoter no bu�ers need to be added for conversion.

The other case of unmatched promoters is when the selected promoter can be re-

pressed by the input TF and the primitive type is an inducible promoter. In this case

the optimizer algorithm adds an inverter motif (repressible promoter + RBS + cod-

ing sequence + terminator) and also substitutes the inducible promoter motif with a

promoter that can be repressed by the coding sequence of the inverter. For instance,

assume for the example in Figure 4�11 for port B TF Tetracycline is selected. For this

TF, the orthogonal feature selection algorithm returns pTet repressible promoter. In

this case, port B cannot be connected to \ipromoter" primitive. Figure 4�13 (b) shows

the substituted inverter and repressible promoter in the violet square.

44

(a) (b)

Figure 4 �13: Part level optimization on the assignment of primitives.
In the DAG (a) the bu�er motif and in the DAG (b) the inverter and
repressible promoter motifs are added for matching the input TF with
the related promoter.

Another important issue in the genetic circuit synthesis is the various protein pro-

duction levels among the elements of circuit. Depending on many di�erent factors, the

protein production rate of a circuit can be changed. As a result, when an interconnec-

tion is made between two circuits, it is important that the input and output signals of

the two can be matched. In (Yaman et al., 2011), an automation algorithm for match-

ing these input and output signals of GRN elements based on their production rates is

proposed.

45

Our proposal for optimization of the synthesized GRN is to tune theRibosomal

Binding Sites (RBS). Consider a circuit with two tandem genetic gates, g1 and g2, in

which g1's output is connected tog2's input. We propose that using the RBS calculator

proposed in (Salis et al., 2009) either the output protein productionrate of g1 can be

tuned to match the required input rate ofg2 or vice versa. Currently, we use a generic

RBS. This tuning process is proposed in the future work section.

4.3.5 Packaging of output

The assignment stage is completed by preparation of the output ofthe synthesis ow.

The output of Cello is a set of composite parts which includes the parts (implicitly nu-

cleotide sequences) required for implementation of the GRN. In theassignment stage,

�rst, a feature from the database of Clotho is assigned to each primitive of the mo-

tifs inside AGRN. After completion of the orthogonal feature selection and part level

optimization stages, the biological parts related to each assigned feature require to be

fetched from the database.

After the parts are queried from the database, these parts arepackaged into com-

posite parts based on the covering partitions. The primitives related to a mapped motif

have same covering partition. However, inside a motif not all of the primitives (parts)

are required to be physically connected (i.e. have attached sequences). These type of

primitives are "transparently connected". In order to be able to distinguish such trans-

parent connections, the related edges inside a DAG can be labeled. After packaging is

done, a set of composite parts are generated which is the output of the synthesis process

(Cello).

46

4.4 Post-synthesis assembly preparation

In order to have a complete ow from the high level description of a genetic circuit to

its implementation in the biological laboratory, two post-synthesis stages are required

to be performed. These post-synthesis stages are proposed byCIDAR group at Boston

University.

The �rst stage is the preparation of the output composite part sequence for assembly.

The assembly of parts requires a speci�c plan, which shows the stages of the assembly

process and the parts that can be assembled in each stage. The Assembly manager

in an App in Clotho which provides a plan for creation of the composite parts. The

applied approach in this tool is based on (Densmore et al., 2010). TheAssembly Manager

generates an assembly graph which is converted to a protocol graph based on the selected

implementation protocol.

After protocol graph is generated, the Puppeteer language is used (Vasilev et al.,

2011). The �rst stage requires existing samples to be fetched from a database and a

protocol library, an instruction code is generated for a liquid handling robot. In order

to generate instructions which are compatible with the robot, the settings of the robot

is also parsed by the code generator.

The �nal stage of the automation is performed by a tool named Puppet Show (Vasilev

et al., 2011). Puppet Show parses the robot code generated by the Puppeteer and sends

out the required instructions to the liquid handling robot to execute.

47

Chapter 5

Experimental Result

5.1 Biological Experiments

Our synthesis ow proposes a methodology to design a genetic circuit using a high level

language. The input of the ow is a genetic circuit description and theoutput is a

DNA sequence. To verify the validation os the proposed ow, we need to show that

the implementation of the output DNA sequence in the laboratory environment has

behavior compatible with the input model.

The limited number of biological parts available for assembly in the laboratory pro-

hibits the implementation of complex circuits. Thus, the experimental testing is per-

formed on a simple three input, one output circuit. Figure 5�1 shows the Verilog de-

scription, the correlated truth table, and the boolean gate level schematic of the test

circuit. Based on the library of available parts, the generated GRN cannot be completely

assigned without running the motif level optimization algorithm (Figure 5�1 top GRN).

However, after removing the bu�er (annotated by orange dashed lines) the optimized

GRN can be completely assigned (Figure 5�1 bottom GRN).

Table 5.1 lists the parts utilized for implementing the test GRN. As established by

Cello, these parts are biologically orthogonal. The Biobrick assembly protocol (Knight,

2003) is selected for implementation of the test GRN in the laboratory. This protocol is

a binary assembly process; in other words, at each stage of this process only two parts

(or composite parts) can be combined. All of the parts in Table 5.1 are compatible with

48

Figure 5 �1: The Verilog description, truth table and the schematic of the
selected circuit for experimental experiments illustrated in this �gure. The
resultant GRN by Cello is drawn and the assigned parts' names are also
labeled. As illustrated, the unoptimized circuit cannot be fully assigned
because of the limit in the number of available parts in the biological
laboratory. However, after running the optimization and removingthe
bu�er, the new circuit is feasible for implementation.

the required format (RFC10 format).

Based on the protocol's requirements, an assembly plan is created for the test GRN,

which is illustrated in Figure 5�2. Each level in the tree shows a stage of assembly.

The leaves are BioBrick parts and the root is the �nal GRN which can be transformed

into Escherichia coli (E.coli) competent cells. The test GRN consists of three composite

parts, illustrated in three di�erent colors: light green, light blue andpurple in Figure 5�2.

A previously assembled composite part,underlined in orange, is reused for this circuit.

The current state of the assembly is annotated with green and bluestars.

49

Table 5.1: List of the parts utilized for implementing the GRN for Figure
5�1. All of the parts are compatible with BioBrick assembly protocol.
Moreover, gene and promoter parts are orthogonal.

Part Number Family Description

BBa I0500 Promoter pBad - Inducuble by Arabionose

BBa R0065 Promoter pCI - Repressible by CI

BBa K091112 Promoter pLac - Respressible by Lac

BBa K091146 Promoter pLas - Inducible by Las+AHL

BBa R0040 Promoter pTet - Indcuible by aTc

BBa C0051 Gene CI - Repressor gene

BBa C0012 Gene LacI - Repressor gene

BBa C0078 Gene LasI - Activator gen

BBa E1010 Gene Red Flourscent Protein - Reporter Gene

BBa B0015 Terminator double terminator

BBa B0034 RBS

5.2 Computational Analysis

A software tool running the proposed synthesis ow, named Cello,is implemented as a

Clotho App. Clotho is a tool suite designed for managing synthetic biology data. Clotho

also provides design tools for engineering synthetic biological systems. In this section,

we analyze our proposed ow and the related algorithms for two di�erent examples.

To provide a clear and understandable analysis, we use a simple circuitwith three

inputs and a single output. This example is used for demonstrating the e�ects of di�erent

algorithms in the ow. The Verilog description, as well as the boolean logic based

schematic of the circuit, are shown in Figure 5�3. As illustrated, this circuit is described

using a boolean expression consisting of two NOR and one inverter operations.

Cello provides the options for running the ow using di�erent optimizations or li-

50

Figure 5 �2: Assembly plan for implementation of the test GRN is de-
signed based on the BioBrick assembly protocol. A previously assembled
section of the GRN, underlined in orange, is reused for this circuit. The
current state of the assembly is annotated by green and blue stars.

brary elements. The �rst optional algorithm is the technology transformation to NOR

(Chapter 4.1.2). Since the motifs available in the database of Cello areall NOR and INV

based, the technology mapping step is currently mandatory. However, if other future

motifs for di�erent operations are de�ned in the database, this stage can be optional.

The three main options that we considered in this analysis begins with gate level opti-

mization (Chapter 4.1.3). In this step, the removal of double inverters can be optionally

performed and the selection may impact the �nal output circuit. The following selection

is for the genetic motif selection step (Chapter 4.2.1), which e�ectsthe technology map-

ping (Chapter 4.2.2). In this step, two di�erent motif packages canbe selected. The �rst

package includes a two input NOR and inverter motifs (NOR2/INV). The second pack-

age choice adds a three input NOR motif to the previous package (NOR3/NOR2/INV).

Another option is motif level optimization (Chapter 4.2.3). If this step is performed,

the bu�er motifs are removed from the design.

It is required to state that, in this analysis, we assumed Cello is connected to a

Clotho library which includes four Repressible promoters, four Repressor genes, four

Inducible promoters, and one reporter gene. We also assumed all of these parts are

orthogonal. The number of orthogonal parts in the library has a direct inuence on the

51

(a)Example ex-A (b)Example ex-A'

Figure 5 �3: The Verilog code, truth table and structure schematic of
running examples of computational analysis. (a) shows ex-A with three
inputs and a single output. (b) illustrates the equivalent boolean equation
described di�erently in Verilog. The transformed structure of theinput
expression is also shown which consists one more NOR gate (the green
schematic).

size of an implementable circuit.Unlike other primitive parts, RBS and terminators do

not have an orthogonality constraint. These parts (RBS and terminator) may e�ect the

reliability of the GRN, in general, and the protein expression rate, in particular. The

promoters and genes are the actual limiting factors for designing aGRN, since they are

required to be orthogonal and may impact each other. As a result inthe tables below,

the number of inducible/repressible promoters and genes are reported for each output

circuit.

Since there are three di�erent optional steps, each with two choices, Cello can gen-

52

erate eight di�erent results based on the di�erent choices. Table 5.2 reports the statics

for number of motifs and primitives forming the generated outputsfor ex-A applying

di�erent optimization steps and mapping criteria. Sinceex-A is completely described

using NOR and INV operations and does not have any double inverter, the gate level

optimization (GOPT) does not impact the �nal output. The modeled circuit consists of

three boolean NOR and INV operators. As a result, by mapping the design using the set

of NOR2/INV, the average number of primitives per gate without optimization is equal

to seven. However, the description can be mapped to a single threeinput NOR, which

results in a lower value of primitives per boolean operator (three to four primitives per

gate). Furthermore, it can be seen that by performing motif leveloptimization (MOPT)

the �nal output mapped by NOR2/INV set can be completely assigned (row 5).

In order to show the e�ect of Verilog description on the result of synthesis process,

we analyzed the boolean equivalent ofex-A which is shown in Figure 5�3(b). As it is

illustrated, the generated netlist ofex-A' includes three AND gates and four invert-

ers. After transforming the AND operators to NOR, the new netlist has 10 inverters

and three NOR's. Exampleex-A' also shows the e�ect of optimization and mapping

steps more clearly. Table 5.3 illustrates the generated outputs forex-A' applying dif-

ferent optimization steps and mapping criteria. After transformation to NOR, the new

structure has 4 double inverters removable by running gate level optimization (GOPT).

However, even after applying GOPT the structure cannot be completely assigned by

mapping to NOR2/INV set. Based on the available parts in the connected library, this

design can only assigned completely when GOPT and motif level optimization (MOPT)

is performed and the selected mapping set is NOR3/NOR2/INV.

53

Table 5.2: The statics for motifs and primitives forming the generated outputs for ex-A applying
di�erent optimization steps and mapping criteria. Sinceex-A is completely described using NOR and
INV operations and does not have any double inverter, the gate level optimization (GOPT) does not
imply any e�ect on the �nal output. However, the description can be mapped to a single three input
NOR, which results in a lower value of primitives per boolean operator.Moreover, it can be seen that
by performing motif level optimization (MOPT) the �nal output mapp ed by NOR2/INV set can be
completely assigned.

Output

Options Motif Level Statistics Primitive Level Statistics
GOPT NOR2

INV
NOR3
NOR2
INV

MOPT Gates NOR2's NOR3's INV's IProm RProm Genes Primitives
/Gate

Completely
Assigned

1 X 3 2 0 1 4 3 5 7 No

2 X X 3 2 0 1 4 3 5 7 No
3 X 3 0 1 0 3 1 2 3 - 4 Yes

4 X X 3 0 1 0 3 1 2 3 - 4 Yes

5 X X 3 2 0 1 3 3 4 6 Yes
6 X X X 3 2 0 1 3 3 4 6 Yes

7 X X 3 0 1 0 3 1 2 3 - 4 Yes
8 X X X 3 0 1 0 3 1 2 3 - 4 Yes

54

Table 5.3: The statics for motifs and primitives forming the generated outputs for ex-A' applying
di�erent optimization steps and mapping criteria. The created netlist for input Verilog description of
ex-A' includes three AND and four INV is operators. After transformation to NOR, the new structure
has 4 double inverters which are removed by running gate level optimization (GOPt). However, even
after applying GOPT the structure cannot be completely assigned by mapping to NOR2/INV set. Based
on the available parts in the connected library, this design is assignedcompletely only when GOPT and
motif level optimization is performed and the mapping set is NOR3/NOR2/INV.

Output

Options Motif Level Statistics Primitive Level Statistics

GOPT NOR2
INV

NOR3
NOR2
INV

MOPT Gates NOR2's NOR3's INV's IProm RProm Genes Primitives
/Gate

Completely
Assigned

1 X 13 3 0 10 6 13 16 5 - 6 No
2 X X 5 3 0 2 6 5 8 7 No

3 X 13 1 1 9 9 11 17 5 - 6 No

4 X X 5 1 1 1 5 3 5 4 - 5 No
5 X X 13 3 0 10 4 13 14 4 - 5 No

6 X X X 5 3 0 2 4 5 6 5 - 6 No
7 X X 13 1 1 9 4 11 12 7 No

8 X X X 5 1 1 1 4 3 4 3 - 4 Yes

55

By comparing statistics reported in Tables 5.2 forex-A and table 5.3 forex-A', it

can be concluded that the primary input description may e�ect the synthesized output

GRN. Out of eight di�erent synthesized network forex-A, six can be completely assigned

and implemented using the available set of parts. On the other hand,for the boolean

equivalent ofex-A, which is ex-A', only one generated output circuit can be completely

assigned using the equal number of parts.

Based on these results, the importance of having design space exploration for the

input description can be concluded. By investigating di�erent equivalent implementa-

tions for an input description, the best feasible solution can be generated. The electronic

design automation researchers have investigated this subject for electronic circuit syn-

thesis. As part of the future work for this project, elaborated design space exploration

algorithms can be added to the synthesis ow to improve the percentage of feasible

output genetic circuits for a given logic circuit description.

Furthermore, the results forex-A' reported in Table 5.3 shows that only one out

of eight di�erent synthesized genetic circuits can be completely assigned with available

parts in the correspondent library. This ratio points out the e�ect of optimization

algorithms on shrinking the size of a circuit from 67 to 29 primitive. In addition to the

optimization algorithms, the availability of di�erent type of motifs with high coverage

such as NOR3 has a direct e�ect on the decrement of the circuit size.

The ratio of primitives per gate is calculated for results of both examples. Based on

Table 5.3, it could be assumed that the circuits having a ratio lower than four primitives

per gate can be completely assigned. However, this assumption is false since Table 5.2

shows that for a ratio of six primitives per gate the outputs number�ve and six are

feasible. Therefore, the rate of primitives per gate is not determinative for feasibility

and complete assignment of the circuit.

56

Chapter 6

Conclusion

Design automation tools are in demand for synthetic biology in order to increase the

pace of investigations and developments in this �eld. In this project, we consider the

approach of applying the methodologies used for electronic design automation (EDA)

to biological design automation (BDA). For certain, while the general concepts in EDA

can be mapped to BDA, major modi�cations are also required.

In this thesis I explained an automation ow which interprets a designdescription in

a high level language and generates the required DNA sequence forthe implementation of

the modeled behavior. In this automation methodology, I break down the synthesis ow

to three stages: Compilation, Mapping and Assignment. While the former two stages are

analogous to logic circuit synthesis stages (however, modi�cationsare required based on

biological constraints), the latter stage completely deals with the requirements of GRN

design.

The analytical results for the proposed synthesis ow are discussed in Chapter 5.2.

These results report the impact of this BDA ow on increasing the feasibility of a circuit

for a given description. For instance, in one of the studied examplesonly one out of

eight di�erent resultant GRN's can be implemented using the available parts, which

shows that optimizations are needed to �nd small sets of feasible designs in large design

spaces.

Moreover, the computational analysis reveals that the output ofthis proposed ow

is dependent to the input description. The comparison made between two functionally

57

equivalent circuits with various input descriptions shows that the percentage of com-

pletely assignable outputs in equal conditions are di�erent for eachdesign. While one

design has 75% feasible design points, the other design has only 12.5%feasible designs.

Hence, design space exploration is mandatory in order to �nd the best solution for any

input description. This problem has been investigated by EDA researchers and can be

contributed to HLL based BDA approaches.

A software tool has been developed based on the proposed synthesis ow, named

Cello. As an extension app for Clotho tool suite, Cello has access to acustom data model

based on synthetic biology's requirements. The implemented compilers and algorithms in

addition to the connection to biological libraries enable Cello to run theow thoroughly

starting from a Verilog description and to generate the required GRN. Cello is an open

source application and it can be accessed and downloaded fromwww.clothocad.org .

In order to verify the synthesis ow, the physical implementation of an experimental

GRN generated by Cello has begun in the laboratory environment. The main target in

the biological experiments is to implement various Cello generated genetic circuits for

the examined description, test the functionality, and investigate the reliability of each

output.

6.1 Future work

One of the most immediate future directions for this project is to complete the im-

plementation of the test design in the biological laboratory. By �nishing the physical

implementation of the test GRN and transforming the DNA to competent cells, a FACS

machine can characterize the circuit for each of the eight di�erentpermutations. We

can then distinguish the performance. Moreover, as discussed previously, other possible

GRN's for the same description can be tested to compare the reliability of designs. More-

over, by increasing the number of available genetic parts, designs with higher complexity

58

can be generated by Cello and examined in the biological laboratory.

Elaboration of compilation and extending it by automated design space exploration

methodologies are of high priority for a truly powerful synthesis ow. The current com-

piler does not support many of the available features of Verilog (forexample behavioral

design description and sequential circuit description among others). Moreover, the gate

level optimization algorithms can also be customized based on geneticcircuit design

speci�cations.

The current version of Cello designed circuits are based on three available motifs of

NOR2, NOR3 and INV. However, the synthesis ow can be strengthened by introducing

libraries of di�erent type of motifs similar to the EDA synthesis tools. In addition to

designing new motifs, investigating e�ciency criteria for making comparison among

di�erent motifs is required.

The motif level optimization step is another potential stage to modify for improving

the synthesis results. In the current version, only bu�ers are removed as far as the motif

level optimization is concerned. However, �nding repeated paths and removing tandem

repressions are two sample extensions for motif level optimization.

Augmenting the reliability of synthesis ow outputs can be another focus of future

work. Approaches such as signal matching and RBS tuning can be investigated more

thoroughly. Furthermore, the resultant circuits of the synthesis can be functionally

veri�ed using existing formal languages and veri�cation algorithms.

Appendix A

Cello compatible Verilog

A design in Verilog can be described using behavioral or structural statements. The

structural statements are either the instantiation of other modules or the continuous

assignment of boolean expressions to ports. The current versionof Cello only compiles

structural Verilog descriptions made with continuous assignment statement. Registers

and wires are not acceptable in the compiler currently. All of the binary logical operators

(&, j and �) can be used for the input Verilog description of Cello. Multi-bit vector

input/output ports will be interpreted as single-bit ports.

Considering these limitations any boolean expression can be written inthe Verilog

�le and there is no limit in the number of expression levels. Two-level logic is also

available and an expression can be written either in Sum-of-Productor Product-of-Sum

format.

59

References

Anderson, J. C., Clarke, E. J., Arkin, A. P., and Voigt, C. A. (2006). Environmen-
tally controlled invasion of cancer cells by engineered bacteria.Journal of Molecular
Biology, 355(4):619{627.

Anderson, J. C., Voigt, C. A., and Arkin, A. P. (2007). Environmental signal integration
by a modular and gate. Molecular Systems Biology, 3(133):133.

Baker, D., Church, G., Collins, J., Endy, D., Jacobson, J., Keasling, J.,Modrich, P.,
Smolke, C., and Weiss, R. (2006). Engineering life: building a fab for biology.
Scienti�c American , 294(6):44{51.

Beal, J., Lu, T., and Weiss, R. (2011). Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks.PLoS ONE, 6(8):e22490.

Bilitchenko, L., Liu, A., Cheung, S., Weeding, E., Xia, B., Leguia, M., Anderson, J. C.,
and Densmore, D. (2011). Eugene a domain speci�c language for specifying and
constraining synthetic biological parts, devices, and systems.PLoS ONE, 6(4):e18882.

Chandran, D., Bergmann, F., and Sauro, H. (2009). Tinkercell: modular cad tool for
synthetic biology. Journal of Biological Engineering, 3(1):19.

Chandran, D., Bergmann, F. T., and Sauro, H. M. (2010). Computer-aided design of
biological circuits using tinkercell. Bioengineered bugs, 1(4):274{281.

Chandran, D., Bergmann, F. T., Sauro, H. M., and Densmore, D. (2011). Computer-
aided design for synthetic biology. In Koeppl, H., Setti, G., di Bernardo, M., and
Densmore, D., editors,Design and Analysis of Biomolecular Circuits, pages 203{224.
Springer New York.

Czar, M. J., Cai, Y., and Peccoud, J. (2009). Writing dna with genocad. Nucleic Acids
Research, 37(Web Server issue):W40{W47.

Densmore, D., Hsiau, T. H. C., Kittleson, J. T., DeLoache, W., Batten, C., and Ander-
son, J. C. (2010). Algorithms for automated dna assembly.Nucleic Acids Research,
38(8):2607{2616.

Densmore, D., Van Devender, A., Johnson, M., and Sritanyaratana, N. (2009). A
platform-based design environment for synthetic biological systems. In The Fifth

60

61

Richard Tapia Celebration of Diversity in Computing Conference: Intellect, Initia-
tives, Insight, and Innovations, TAPIA '09, pages 24{29, New York, NY, USA. ACM.

Dunlop, M. J., Keasling, J. D., and Mukhopadhyay, A. (2010). A model for improving
microbial biofuel production using a synthetic feedback loop.Systems and synthetic
biology, 4(2):95{104.

Endy, D. (2005). Foundations for engineering biology.Nature, 438(7067):449{453.

Frezza, B. M., Cockroft, S. L., and Ghadiri, M. R. (2007). Modular multi-level circuits
from immobilized dna-based logic gates.Journal of the American Chemical Society,
129(48):14875{14879.

Gardner, T. S., Cantor, C. R., and Collins, J. J. (2000). Construction of a genetic
toggle switch in escherichia coli.Nature, 403(6767):339{342.

Garey, M. R. and Johnson, D. S. (1979).Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman.

Katz, R. H. (1993). Contemporary logic design. Benjamin-Cummings Publishing Co.,
Inc., Redwood City, CA, USA.

Keasling, J. D. and Chou, H. (2008). Metabolic engineering delivers next-generation
biofuels. Nature Biotechnology, 26(3):298{299.

Keutzer, K. (1987). Dagon: technology binding and local optimization by dag matching.
In Proceedings of the 24th ACM/IEEE Design Automation Conference, DAC '87,
pages 341{347, New York, NY, USA. ACM.

Khalil, A. S. and Collins, J. J. (2010). Synthetic biology: applications come of age.
Nature Reviews Genetics, 11(5):367{379.

Knight, T. (2003). Idempotent vector design for standard assembly of biobricks. Secu-
rity , pages 1{11.

Lehman, E., Watanabe, Y., Grodstein, J., and Harkness, H. (1995). Logic decomposi-
tion during technology mapping. InProceedings of the 1995 IEEE/ACM international
conference on Computer-aided design, ICCAD '95, pages 264{271, Washington, DC,
USA. IEEE Computer Society.

MacDonald, J. T., Barnes, C., Kitney, R. I., Freemont, P. S., and Stan, G.-B. V. (2011).
Computational design approaches and tools for synthetic biology.Integrative biology
quantitative biosciences from nano to macro, 3(2):97{108.

Marchisio, M. A. and Stelling, J. (2009). Computational design toolsfor synthetic
biology. Current Opinion in Biotechnology, 20(4):479{485.

62

Mermet, J. P. (1993). Fundamentals and Standards in Hardware Description Languages:
Proceedings of the NATO Advanced Study Institute, in Ciocco, Barga, Italy, April 16-
26, 1993. Kluwer Academic Publishers, Norwell, MA, USA.

Myers, C. J. (2009). Engineering Genetic Circuits. Chapman and Hall.

Parr, T. (2007). The De�nitive ANTLR Reference: Building Domain-Speci�c Lan-
guages. Pragmatic Bookshelf.

Parr, T. J. and Quong, R. W. (1995). Antlr: A predicated-ll(k) parser generator.
Software: Practice and Experience, 25(7):789{810.

Pedersen, M. and Phillips, A. (2009). Towards programming languages for genetic
engineering of living cells. Journal of the Royal Society Interface the Royal Society,
6(4):S437{S450.

Purnick, P. E. M. and Weiss, R. (2009). The second wave of synthetic biology: from
modules to systems.Nature Reviews Molecular Cell Biology, 10(6):410{422.

Rinaudo, K., Bleris, L., Maddamsetti, R., Subramanian, S., Weiss, R., and Benenson,
Y. (2007). A universal rnai-based logic evaluator that operates inmammalian cells.
Nature Biotechnology, 25(7):795{801.

Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M.,
Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., and et al. (2006). Production
of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature,
440(7086):940{943.

Rodrigo, G. and Jaramillo, A. (2007). Computational design of digital and memory
biological devices.Systems and synthetic biology, 1(4):183{195.

Rudell, R. and Sangiovanni-Vincentelli, A. (1987). Multiple-valued minimization for pla
optimization. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 6(5):727{750.

Salis, H. M., Mirsky, E. A., and Voigt, C. A. (2009). Automated designof synthetic ri-
bosome binding sites to control protein expression.Nature Biotechnology, 27(10):946{
950.

Stojanovic, M. and Stefanovic, D. (2003). A deoxyribozyme-based molecular automa-
ton. Nature Biotechnology, 21(9):1069{1074.

Stok, L. and Tiwari, V. (2002). Technology mapping, pages 115{139. Kluwer Academic
Publishers, Norwell, MA, USA.

Systems, C. D. (2011). Cadence encounter rtl compiler.http://www.cadence.com .

63

Tamsir, A., Tabor, J. J., and Voigt, C. A. (2011). Robust multicellularcomputing using
genetically encoded NOR gates and chemical `wires'.Nature, 469:212{215.

Ter-Galstyan, A. (2008). Verilog grammar for antlr v3. http://www.antlr.org/
grammar/1227766760039/Verilog3.g .

Thomas, D. E. and Moorby, P. (1995). The Verilog hardware description language (2.
ed.). Kluwer.

Vasilev, V., Liu, C., Haddock, T., Bhatia, S., Adler, A., Yaman, F., Beal, J., Babb, J.,
Weiss, R., and Densmore, D. (2011). A software stack for specication and robotic ex-
ecution of protocols for synthetic biological engineering.3rd International Workshop
on Bio-Design Automation.

Xia, B., Bhatia, S., Bubenheim, B., Dadgar, M., Densmore, D., and Anderson, J. C.
(2011). Developers and user's guide to clotho v2.0 a software platform for the creation
of synthetic biological systems.Methods in Enzymology, 498:97{135.

Yaman, F., Bhatia, S., Adler, A., Densmore, D., Beal, J., Babb, J., Davidsohn, N.,
Haddock, T., Loyall, J., Schantz, R., and Weiss, R. (2011). Toward automated
selection of parts for genetic regulatory networks. 3rd International Workshop on
Bio-Design Automation.

Yokobayashi, Y., Weiss, R., and Arnold, F. H. (2002). Directed evolution of a genetic
circuit. Proceedings of the National Academy of Sciences of the United States of
America, 99(26):16587{16591.

CURRICULUM VITAE

Roza Ghamari
Department of Electrical and Computer En-
gineering
Boston University
8 Saint Marry St.
Boston, MA 02215

Phone: (857) 305 5692
O�ce: 209 PHO
Email:rozagh@bu.edu

Education

M.S. Computer Engineering, Boston University, 2011.

Thesis: Applying Hardware Description Languages on Genetic Circuit Design.

M.S. (24 credits towards degree) Computer Engineering, BogaziciUniversity, 2010.

B.S. Computer Engineering (Software), Razi University, 2008.

Thesis: Dependability Enhancement of Dynamic Instruction Scheduling

Employment

Research Assistant, CIDAR, Boston University, Jan 2011{present.

Research Assistant, CASLAB, Bogazici University, Nov 2008{Jan2010

Software Engineer, Electric Power Technology Development Center, Iran, Apr 2008{
Sep 2008

Publications and Reasearch

Peer reviewed/Conferences

Ghamari, R. and Rajabzadeh, A., "FTDIS: A Fault Tolerant Dynamic Instruc-
tion Scheduling," Third International Conference on Dependability 2010, (DE-
PEND10), vol., no., pp.32-37, 18-25 July 2010.

Ghamari, R. and Yurdakul, A., Register File Design in Automatically Generated
ASIPs, 4th HiPEAC Workshop on Recon�gurable Computing (WRC10), Jan 23,
2010, Pisa, Italy.

65

Kurumahmut, B., Kabukcu, G., Ghamari, R. and Yurdakul, A., "Designautoma-
tion model for application-speci�c processors on recon�gurable fabric," Forum on
Speci�cation and Design Languages, 2009 (FDL09), vol., no., pp.1-6, 22-24 Sept.
2009.

Book Chapter

Yurdakul, A., Ghamari, R., Kurumahmut B. and Kabukcu, G., Design Automa-
tion Model for Application-Speci�c Processors on Recon�gurable Fabric, Ad-
vances In Design Methods From Modeling Languages For Embedded Systems
And Socs Lecture Notes in Electrical Engineering, 2010, Volume 63,Part 2, 107-
124.

Poster Presentations

Ghamari R., Stanton B., Haddock T., Bhatia S., Clancy K., Peterson T.,Voigt C.
and Densmore D., Applying Hardware Description Languages to Genetic Circuit
Design Third International Workshop on Bio-Design Automation (IWBDA), San
Diego, CA, June 2011.

Ghamari R., Bhatia S., Voigt C. and Densmore D., Applying Combinational
Logic Design Methodologies on Genetic Circuits, TAPIA 11, San Francisco, CA,
April 2011.

Awards

The Hariri Award for Transformative Computational Science Research award for the
poster titled DNA Computation Using Combinational Logic Design Methodologies

Travel Grants for TAPIA 11, and IWBDA 11.

