Specify, Design, and Assemble: A Top-Down Design Flow Using *Clotho*

Evan Appleton, Swapnil Bhatia, Traci Haddock, Viktor Vasilev, Roza Ghamari, Rishi Ganguly, and Douglas Densmore

CIDAR Laboratory, Boston University
8 Saint Mary’s St. Boston, MA, USA 02215
Clotho - Synthetic Biology Software Platform and Data Model

- **Clotho** has applications that can be developed independently
- Specification of cellular behavior in various contexts
- Design of genetic circuits automatically and manually
- DNA assembly performed automatically with liquid handling robot using the Puppeteer Protocol Automation stack
- Assembled parts characterized and data is used in a characterization workflow to refine the design process
<table>
<thead>
<tr>
<th>SPECIFY</th>
<th>PROTO</th>
<th>CELLO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESIGN</td>
<td>EUGENE & SPECTACLES</td>
<td>MATCH-MAKER</td>
</tr>
<tr>
<td>ASSEMBLE</td>
<td>BATTERBOARD</td>
<td>PUPPETEER</td>
</tr>
<tr>
<td>CHARACTERIZE</td>
<td>BATTERBOARD</td>
<td>DATA</td>
</tr>
</tbody>
</table>

The diagram illustrates the workflow from SPECIFY to CHARACTERIZE, with PROTO as the central node.
Acknowledgements

• Densmore Lab (CIDAR) (Boston University)
• Weiss Lab (MIT)
• Raytheon BBN Technologies
• Voigt Lab (MIT)
• National Science Foundation (NSF)
• BU Bioinformatics (Boston University)