How to build an n-input circuit library

Swapnil Bhatia and Douglas Densmore
Joint work with Alec Nielsen, Michael Smanski, and Christopher Voigt

Goal
To build a library of genetic circuits implementing all three-input one-output Boolean functions

Plan
- Choose a **basis set** of logic gates
- For each possible Boolean function, generate **optimal** logic circuits
- For each logic circuit, generate abstract genetic circuit
- Assign parts to all abstract genetic circuits from a parts library
- Compute an **optimal** assembly plan
- Compile to **robot** code and execute

Approach
- Basis set: **two-input NOR gate**
- Optimal circuits via **exhaustive search**
- Abstract genetic circuits by **motif mapping**
- Part assignment for **maximal reuse**
- Modular cloning (MoClo) with **primer-minimizing** assembly plan
- MoClo protocols in **Puppeteer** on Tecan

Optimal circuits
A logic circuit is **optimal** if it uses the fewest gates
Define grammar: \(S \rightarrow a|b|c|0|(S \star S) \)

Algorithm
Generate all **distinct expressions** \(e \) from \(S \)
Compute **truth table** of the logic circuit of \(e \), \(C(e) \)
Retain, if size of \(C(e) \) < size of best expression so far

Motif mapping
\[
(x \star y) \quad \rightarrow \quad p(x) \quad p(y) \quad g(x \star y) \quad p(x \star y)
\]

Part assignment as bipartite graph coloring
Motif instances

Algorithm
Heuristic constraint solver:
Color all motif instances such that **all colors in a circuit are distinct**

Primer optimal MoClo assembly
Given a collection of sets of transcriptional units (TUs), compute a **linearization** for each set such that the number of **distinct vectors per TU** is minimized.

Heuristic algorithm
Linearize TUs by constituent part usage count

Illustrative results

Development in progress
Puppeteer implementation of MoClo assembly
Robot liquid class optimization
Circuit-level RBS tuning algorithm